Fractional derivative of power type functions

被引:0
|
作者
Bengochea Gabriel
Ortigueira Manuel
机构
[1] Universidad Autónoma de la Ciudad de México,Academia de Matemáticas
[2] NOVA University of Lisbon,CTS
来源
关键词
Power type signal; Almost periodic; Unified fractional derivative; Autocorrelation;
D O I
暂无
中图分类号
学科分类号
摘要
Non-square integrable, power type, signals are introduced and studied with generality. The problems associated with the definition of their suitable fractional derivatives are discussed and solved. Two particular, very important, cases are treated with detail: the almost periodic signals and the stationary stochastic processes. For them, correlations and corresponding generalized harmonic analysis are introduced and studied.
引用
收藏
相关论文
共 50 条
  • [21] CONVERGENCE OF SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS TO POWER-TYPE FUNCTIONS
    Kassim, Mohammed Dahan
    Tatar, Nasser Eddine
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [22] On a Caputo-type fractional derivative
    Oliveira, Daniela S.
    de Oliveira, Edmundo Capelas
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (02) : 81 - 91
  • [23] Applications of Feket-Szegiii Inequalities for Generalized Sakaguchi Type Functions to Fractional Derivative Operator
    Mathur, Trilok
    Mathur, Ruchi
    Sinha, Deepa
    MATEMATIKA, 2014, 30 (01) : 89 - 96
  • [24] FRACTIONAL-LIKE DERIVATIVE OF LYAPUNOV-TYPE FUNCTIONS AND APPLICATIONS TO STABILITY ANALYSIS OF MOTION
    Martynyuk, Anatoliy A.
    Stamova, Ivanka M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, : 1 - 12
  • [25] A new Riemann-Liouville type fractional derivative operator and its application in generating functions
    Shadab, M.
    Khan, M. Faisal
    Lopez-Bonilla, J. Luis
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [26] Fractional calculus for power functions and eigenvalues of the fractional Laplacian
    Dyda, Bartlomiej
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 536 - 555
  • [27] Fractional calculus for power functions and eigenvalues of the fractional Laplacian
    Bartłlomiej Dyda
    Fractional Calculus and Applied Analysis, 2012, 15 : 536 - 555
  • [28] Applications of continuity and discontinuity of a fractional derivative of the wave functions to fractional quantum mechanics
    Dong, Jianping
    Xu, Mingyu
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [29] ON THE FRACTIONAL q-DERIVATIVE OF CAPUTO TYPE
    Stankovic, Miomir S. l
    Rajkovic, Predrag M.
    Marinkovic, Sladjana D.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (02): : 197 - 204
  • [30] Dynamics of a viscoelastic rod of fractional derivative type
    Atanackovic, TM
    Stankovic, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2002, 82 (06): : 377 - 386