On Nash–Cournot oligopolistic market equilibrium models with concave cost functions

被引:0
|
作者
Le D. Muu
V. H. Nguyen
N. V. Quy
机构
[1] Institute of Mathematics,Département de Mathématiques
[2] FUNDP unité d’Optimisation,undefined
[3] Financial and Accounting Institute,undefined
[4] Co Nhue,undefined
[5] Tu Liem,undefined
来源
关键词
Nonconvex Nash–Cournot model; Equilibrium; Concave cost; Variational inequality; Existence of solution; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Nash–Cournot oligopolistic market equilibrium models with concave cost functions. Concavity implies, in general, that a local equilibrium point is not necessarily a global one. We give conditions for existence of global equilibrium points. We then propose an algorithm for finding a global equilibrium point or for detecting that the problem is unsolvable. Numerical experiments on some randomly generated data show efficiency of the proposed algorithm.
引用
收藏
页码:351 / 364
页数:13
相关论文
共 50 条
  • [1] On Nash-Cournot oligopolistic market equilibrium models with concave cost functions
    Muu, Le D.
    Nguyen, V. H.
    Quy, N. V.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (03) : 351 - 364
  • [2] DC-Gap function and proximal methods for solving nash-cournot oligopolistic equilibrium models involving concave cost
    Muu, Le Dung
    van Quy, Nguyen
    [J]. Journal of Applied and Numerical Optimization, 2019, 1 (01): : 13 - 24
  • [3] A SPLITTING PROXIMAL POINT METHOD FOR NASH-COURNOT EQUILIBRIUM MODELS INVOLVING NONCONVEX COST FUNCTIONS
    Tran Dinh Quoc
    Le Dung Muu
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (03) : 519 - 533
  • [4] A self-adaptive extragradient–CQ method for a class of bilevel split equilibrium problem with application to Nash Cournot oligopolistic electricity market models
    Yusuf I. Suleiman
    Habib ur Rehman
    Aviv Gibali
    Poom Kumam
    [J]. Computational and Applied Mathematics, 2020, 39
  • [5] EXISTENCE OF COURNOT EQUILIBRIUM WITHOUT CONCAVE PROFIT FUNCTIONS
    ROBERTS, J
    SONNENSCHEIN, H
    [J]. JOURNAL OF ECONOMIC THEORY, 1976, 13 (01) : 112 - 117
  • [6] A self-adaptive extragradient-CQ method for a class of bilevel split equilibrium problem with application to Nash Cournot oligopolistic electricity market models
    Suleiman, Yusuf I.
    Ur Rehman, Habib
    Gibali, Aviv
    Kumam, Poom
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [7] Search for a market equilibrium of Cournot-Nash in the competitive heat market
    Penkovskii, Andrey
    Stennikov, Valery
    Mednikova, Ekaterina
    Postnikov, Ivan
    [J]. ENERGY, 2018, 161 : 193 - 201
  • [8] EXISTENCE OF COURNOT EQUILIBRIUM WITHOUT CONCAVE PROFIT FUNCTIONS - ACKNOWLEDGMENT
    ROBERTS, J
    SONNENSCHEIN, H
    [J]. JOURNAL OF ECONOMIC THEORY, 1977, 16 (02) : 521 - 521
  • [9] The generalized Nash equilibrium model for oligopolistic transit market with elastic demand
    Zhou, J
    Lam, WHK
    Heydecker, BG
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2005, 39 (06) : 519 - 544
  • [10] A Dynamic Model of Cournot Competition for an Oligopolistic Market
    Lian, Zeng
    Zheng, Jie
    [J]. MATHEMATICS, 2021, 9 (05) : 1 - 18