On Nash–Cournot oligopolistic market equilibrium models with concave cost functions

被引:0
|
作者
Le D. Muu
V. H. Nguyen
N. V. Quy
机构
[1] Institute of Mathematics,Département de Mathématiques
[2] FUNDP unité d’Optimisation,undefined
[3] Financial and Accounting Institute,undefined
[4] Co Nhue,undefined
[5] Tu Liem,undefined
来源
关键词
Nonconvex Nash–Cournot model; Equilibrium; Concave cost; Variational inequality; Existence of solution; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Nash–Cournot oligopolistic market equilibrium models with concave cost functions. Concavity implies, in general, that a local equilibrium point is not necessarily a global one. We give conditions for existence of global equilibrium points. We then propose an algorithm for finding a global equilibrium point or for detecting that the problem is unsolvable. Numerical experiments on some randomly generated data show efficiency of the proposed algorithm.
引用
收藏
页码:351 / 364
页数:13
相关论文
共 50 条
  • [1] On Nash-Cournot oligopolistic market equilibrium models with concave cost functions
    Muu, Le D.
    Nguyen, V. H.
    Quy, N. V.
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (03) : 351 - 364
  • [2] DC-Gap function and proximal methods for solving nash-cournot oligopolistic equilibrium models involving concave cost
    Muu L.D.
    van Quy N.
    Journal of Applied and Numerical Optimization, 2019, 1 (01): : 13 - 24
  • [3] A SPLITTING PROXIMAL POINT METHOD FOR NASH-COURNOT EQUILIBRIUM MODELS INVOLVING NONCONVEX COST FUNCTIONS
    Tran Dinh Quoc
    Le Dung Muu
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (03) : 519 - 533
  • [4] A self-adaptive extragradient–CQ method for a class of bilevel split equilibrium problem with application to Nash Cournot oligopolistic electricity market models
    Yusuf I. Suleiman
    Habib ur Rehman
    Aviv Gibali
    Poom Kumam
    Computational and Applied Mathematics, 2020, 39
  • [5] EXISTENCE OF COURNOT EQUILIBRIUM WITHOUT CONCAVE PROFIT FUNCTIONS
    ROBERTS, J
    SONNENSCHEIN, H
    JOURNAL OF ECONOMIC THEORY, 1976, 13 (01) : 112 - 117
  • [6] A self-adaptive extragradient-CQ method for a class of bilevel split equilibrium problem with application to Nash Cournot oligopolistic electricity market models
    Suleiman, Yusuf I.
    Ur Rehman, Habib
    Gibali, Aviv
    Kumam, Poom
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [7] Search for a market equilibrium of Cournot-Nash in the competitive heat market
    Penkovskii, Andrey
    Stennikov, Valery
    Mednikova, Ekaterina
    Postnikov, Ivan
    ENERGY, 2018, 161 : 193 - 201
  • [8] EXISTENCE OF COURNOT EQUILIBRIUM WITHOUT CONCAVE PROFIT FUNCTIONS - ACKNOWLEDGMENT
    ROBERTS, J
    SONNENSCHEIN, H
    JOURNAL OF ECONOMIC THEORY, 1977, 16 (02) : 521 - 521
  • [9] The generalized Nash equilibrium model for oligopolistic transit market with elastic demand
    Zhou, J
    Lam, WHK
    Heydecker, BG
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2005, 39 (06) : 519 - 544
  • [10] A Dynamic Model of Cournot Competition for an Oligopolistic Market
    Lian, Zeng
    Zheng, Jie
    MATHEMATICS, 2021, 9 (05) : 1 - 18