On Nash-Cournot oligopolistic market equilibrium models with concave cost functions

被引:33
|
作者
Muu, Le D. [1 ]
Nguyen, V. H. [2 ]
Quy, N. V. [3 ]
机构
[1] Inst Math, Hanoi 10137, Vietnam
[2] FUNDP Unite Optimisat, Dept Math, Namur, Belgium
[3] Financial & Accounting Inst, Hanoi 10137, Vietnam
关键词
nonconvex Nash-Cournot model; equilibrium; concave cost; variational inequality; existence of solution; algorithm;
D O I
10.1007/s10898-007-9243-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider Nash-Cournot oligopolistic market equilibrium models with concave cost functions. Concavity implies, in general, that a local equilibrium point is not necessarily a global one. We give conditions for existence of global equilibrium points. We then propose an algorithm for finding a global equilibrium point or for detecting that the problem is unsolvable. Numerical experiments on some randomly generated data show efficiency of the proposed algorithm.
引用
收藏
页码:351 / 364
页数:14
相关论文
共 50 条
  • [1] On Nash–Cournot oligopolistic market equilibrium models with concave cost functions
    Le D. Muu
    V. H. Nguyen
    N. V. Quy
    [J]. Journal of Global Optimization, 2008, 41 : 351 - 364
  • [2] DC-Gap function and proximal methods for solving nash-cournot oligopolistic equilibrium models involving concave cost
    Muu L.D.
    van Quy N.
    [J]. Journal of Applied and Numerical Optimization, 2019, 1 (01): : 13 - 24
  • [3] A SPLITTING PROXIMAL POINT METHOD FOR NASH-COURNOT EQUILIBRIUM MODELS INVOLVING NONCONVEX COST FUNCTIONS
    Tran Dinh Quoc
    Le Dung Muu
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (03) : 519 - 533
  • [4] Empirical Results about the Nash-Cournot Equilibrium
    Brill, E.
    Gonen, A.
    Fligel, E.
    Goldstein, E.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2009, : 130 - 134
  • [5] A note on the uniqueness of Nash-Cournot equilibria in an oligopolistic energy market with renewable generation and demand uncertainty
    Chaiken, Benjamin
    Duggan Jr, Joseph E.
    [J]. ENERGY ECONOMICS, 2024, 138
  • [6] Nash-Cournot equilibrium of a deregulated electricity market using competitive coevolutionary algorithms
    Ladjici, A. A.
    Boudour, M.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (04) : 958 - 966
  • [7] Network games; Adaptations to Nash-Cournot equilibrium
    Flam, SD
    Horvath, C
    [J]. ANNALS OF OPERATIONS RESEARCH, 1996, 64 : 179 - 195
  • [8] Reflected Iterative Method for Non-Monotone Equilibrium Problems with Applications to Nash-Cournot Equilibrium Models
    Yekini Shehu
    Lulu Liu
    Xiaolong Qin
    Qiao-Li Dong
    [J]. Networks and Spatial Economics, 2022, 22 : 153 - 180
  • [9] Electricity Market Nash-Cournot Equilibrium Analysis with High Proportion of Gas-Fired Generators
    Chen, Gang
    Lu, En
    Zeng, Kaiwen
    Dong, Chao
    Hu, Shizhao
    Guo, Hongye
    Chen, Qixin
    [J]. 8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 3282 - 3288
  • [10] EQUILIBRIUM CONDITIONS FOR EFFICIENT RENT SEEKING - THE NASH-COURNOT SOLUTION
    CLEETON, DL
    [J]. QUARTERLY REVIEW OF ECONOMICS AND BUSINESS, 1989, 29 (02): : 6 - 14