VMO spaces associated with divergence form elliptic operators

被引:0
|
作者
Liang Song
Ming Xu
机构
[1] Sun Yat-sen (Zhongshan) University,Department of Mathematics
[2] Ji’nan University,Department of Mathematics
来源
Mathematische Zeitschrift | 2011年 / 269卷
关键词
Elliptic operators; Hardy spaces; BMO; VMO; Tent space; 42B35; 42B25; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the second order divergence form elliptic operator L with complex bounded coefficients. In this paper we introduce and develop a function space VMOL of vanishing mean oscillation associated with the operator L. Using the theory of tent spaces and the Littlewood-Paley theory, we prove that the Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{L}^1}$$\end{document} of Hofmann and Mayboroda introduced in Hofmann and Mayboroda (Math Ann 344:37–116, 2009) is the dual of our \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm VMO}_{L^{\ast}}}$$\end{document}, in which L* is the adjoint operator of L. We also give an equivalent characterization of the space VMOL in the context of the theory of tent spaces.
引用
收藏
页码:927 / 943
页数:16
相关论文
共 50 条
  • [31] On second-order periodic elliptic operators in divergence form
    Ter Elst A.F.M.
    Robinson D.W.
    Sikora A.
    Mathematische Zeitschrift, 2001, 238 (3) : 569 - 637
  • [32] Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds
    do Carmo, Manfredo P.
    Wang, Qiaoling
    Xia, Changyu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) : 643 - 660
  • [33] Onp-elliptic divergence form operators and holomorphic semigroups
    Egert, Moritz
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) : 705 - 724
  • [34] Spectral stability estimates of Dirichlet divergence form elliptic operators
    Gol'dshtein, Vladimir
    Pchelintsev, Valerii
    Ukhlov, Alexander
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [35] G-CONVERGENCE FOR NON-DIVERGENCE ELLIPTIC OPERATORS WITH VMO COEFFICIENTS IN R3
    Alberico, Teresa
    Capozzoli, Costantino
    D'Onofrio, Luigi
    Schiattarella, Roberta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (02): : 129 - 137
  • [36] Fundamental tone estimates for elliptic operators in divergence form and geometric applications
    Bessa, Gregorio P.
    Jorge, Luquesio P.
    Lima, Barnabe P.
    Montenegro, Jose F.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2006, 78 (03): : 391 - 404
  • [37] On non-autonomous maximal regularity for elliptic operators in divergence form
    Pascal Auscher
    Moritz Egert
    Archiv der Mathematik, 2016, 107 : 271 - 284
  • [38] Estimates for the Lower Order Eigenvalues of Elliptic Operators in Weighted Divergence Form
    Yanli LI
    Feng DU
    JournalofMathematicalResearchwithApplications, 2017, 37 (03) : 307 - 316
  • [39] G-CONVERGENCE OF ELLIPTIC OPERATORS IN NON DIVERGENCE FORM Rn
    D'Onofrio, Luigi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (71)
  • [40] Bilinear embedding for real elliptic differential operators in divergence form with potentials
    Dragicevic, Oliver
    Volberg, Alexander
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (10) : 2816 - 2828