Heterogeneous treatment effects of intensive glycemic control on major adverse cardiovascular events in the ACCORD and VADT trials: a machine-learning analysis

被引:0
|
作者
Justin A. Edward
Kevin Josey
Gideon Bahn
Liron Caplan
Jane E. B. Reusch
Peter Reaven
Debashis Ghosh
Sridharan Raghavan
机构
[1] University of Colorado School of Medicine,Division of Cardiology
[2] Rocky Mountain,Department of Veterans Affairs Eastern Colorado Healthcare System
[3] Regional VA Medical Center,Department of Biostatistics and Informatics
[4] Medicine Service (111),Department of Veterans Affairs
[5] Colorado School of Public Health,Division of Rheumatology
[6] Hines VA Hospital,Division of Endocrinology, Metabolism, and Diabetes
[7] University of Colorado School of Medicine,Division of Biomedical Informatics and Personalized Medicine
[8] University of Colorado School of Medicine,undefined
[9] Department of Veterans Affairs Phoenix VA Medical Center,undefined
[10] University of Colorado School of Medicine,undefined
[11] Colorado Cardiovascular Outcomes Research Consortium,undefined
来源
Cardiovascular Diabetology | / 21卷
关键词
Machine learning; Glycemic control; Subgroup effects; Heterogeneity; Type 2 diabetes;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Machine Learning Based Risk Prediction for Major Adverse Cardiovascular Events for ELGA-Authorized Clinics
    Polat Erdeniz S.
    Kramer D.
    Schrempf M.
    Rainer P.P.
    Felfernig A.
    Tran T.N.T.
    Burgstaller T.
    Lubos S.
    Studies in Health Technology and Informatics, 2023, 301 : 20 - 25
  • [32] PREDICTING POST-LIVER TRANSPLANTATION MAJOR ADVERSE CARDIOVASCULAR EVENTS USING A MACHINE LEARNING ALGORITHM
    Soldera, Jonathan
    Corso, Leandro L.
    Rech, Matheus M.
    Ballotin, Vinicius R.
    Bigarella, Lucas G.
    Tome, Fernanda
    Moraes, Nathalia
    Balbinot, Rafael S.
    Rodriguez, Santiago
    Brandao, Ajacio B.
    Hochhegger, Bruno
    GASTROENTEROLOGY, 2023, 164 (06) : S1387 - S1388
  • [33] Predicting Major Adverse Cardiovascular Events in Acute Coronary Syndrome: A Scoping Review of Machine Learning Approaches
    Chopannejad, Sara
    Sadoughi, Farahnaz
    Bagherzadeh, Rafat
    Shekarchi, Sakineh
    APPLIED CLINICAL INFORMATICS, 2022, 13 (03): : 720 - 740
  • [34] Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study
    Peng, Xiran
    Zhu, Tao
    Wang, Tong
    Wang, Fengjun
    Li, Ke
    Hao, Xuechao
    BMC ANESTHESIOLOGY, 2022, 22 (01)
  • [35] External validation and interpretability of machine learning-based risk prediction for major adverse cardiovascular events
    Shimizu, Gilson Yuuji
    Romao, Elen Almeida
    Cardeal da Costa, Jose Abrao
    Mazzoncini de Azevedo-Marques, Joao
    Scarpelini, Sandro
    Firmino Suzuki, Katia Mitiko
    Cesar, Hilton Vicente
    Azevedo-Marques, Paulo M.
    2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 140 - 145
  • [36] Persistent Effects of Intensive Glycemic Control on Retinopathy in Type 2 Diabetes in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Follow-On Study
    Chew, Emily Y.
    Lovato, James F.
    Davis, Matthew D.
    Gerstein, Hertzel C.
    Danis, Ronald P.
    Ismail-Beigi, Faramarz
    Genuth, Saul
    Greven, Craig M.
    Perdue, Letitia H.
    Cushman, William C.
    Elam, Marshall B.
    Bigger, J. Thomas
    Ginsberg, Henry N.
    Goff, David C., Jr.
    Ambrosius, Walter T.
    DIABETES CARE, 2016, 39 (07) : 1089 - 1100
  • [37] Discussion to: Heterogeneous treatment effects of coronary artery bypass grafting in ischemic cardiomyopathy: A machine-learning causal forest analysis
    Wu, Zhongkai
    Accola, Kevin
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2024, 168 (05): : 1472 - 1473
  • [38] Treatment-emergent major adverse cardiovascular and thromboembolic events were infrequent during clinical trials of pegloticase
    Troum, Orrin M.
    Duong, Mai
    Obermeyer, Katie
    Padnick-Silver, Lissa
    Lamoreaux, Brian
    RHEUMATOLOGY, 2025,
  • [39] Using Machine Learning Extreme Gradient Boosting Model to Predict Major Adverse Cardiovascular Events: A Systematic Review
    Haseeb, Shahan
    Ansari, Umair
    Ali, Hassam
    JACC-CARDIOVASCULAR INTERVENTIONS, 2024, 17 (04) : S55 - S55
  • [40] Machine Learning Models to Predict Major Adverse Cardiovascular Events After Orthotopic Liver Transplantation: A Cohort Study
    Jain, Vardhmaan
    Bansal, Agam
    Radakovich, Nathan
    Sharma, Vikram
    Khan, Muhammad Zarrar
    Harris, Kevin
    Bachour, Salam
    Kleb, Cerise
    Cywinski, Jacek
    Argalious, Maged
    Quintini, Cristiano
    Menon, K. V. Narayanan
    Nair, Ravi
    Tong, Michael
    Kapadia, Samir
    Fares, Maan
    JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2021, 35 (07) : 2063 - 2069