On an extension of the generalized BGW tau-function

被引:0
|
作者
Di Yang
Chunhui Zhou
机构
[1] USTC,School of Mathematical Sciences
[2] USTC,Institute of Geometry and Physics
来源
关键词
Burgers-KdV hierarchy; Dubrovin–Zhang type tau-function; KP tau-function; Analogous open extension; Schur polynomial; Generalized BGW tau-function; 37K10; 14H70; 53D45;
D O I
暂无
中图分类号
学科分类号
摘要
For an arbitrary solution to the Burgers–KdV hierarchy, we define the tau-tuple (τ1,τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tau _1,\tau _2)$$\end{document} of the solution. We show that the product τ1τ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _1\tau _2$$\end{document} admits Buryak’s residue formula. Therefore, according to Alexandrov’s theorem, τ1τ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _1\tau _2$$\end{document} is a tau-function of the KP hierarchy. We then derive a formula for the affine coordinates for the point of the Sato Grassmannian corresponding to the tau-function τ1τ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _1\tau _2$$\end{document} explicitly in terms of those for τ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _1$$\end{document}. Applications to the analogous open extension of the generalized BGW tau-function and to the open partition function are given.
引用
收藏
相关论文
共 50 条