A FORMULA FOR RAMANUJAN TAU-FUNCTION

被引:3
|
作者
EWELL, JA
机构
关键词
D O I
10.2307/2045264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:37 / 40
页数:4
相关论文
共 50 条
  • [1] ODD VALUES OF THE RAMANUJAN TAU-FUNCTION
    MURTY, MR
    MURTY, VK
    SHOREY, TN
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1987, 115 (03): : 391 - 395
  • [2] MULTIPLICATIVE FUNCTIONS AND RAMANUJAN TAU-FUNCTION
    ELLIOTT, PDTA
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1981, 30 (APR): : 461 - 468
  • [3] ON ZAGIERS CUSP FORM AND THE RAMANUJAN TAU-FUNCTION
    HASHIM, A
    MURTY, MR
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1994, 104 (01): : 93 - 98
  • [4] Even values of Ramanujan's tau-function
    Balakrishnan, Jennifer S.
    Ono, Ken
    Tsai, Wei-Lun
    [J]. arXiv, 2021,
  • [5] Even Values of Ramanujan’s Tau-Function
    Jennifer S. Balakrishnan
    Ken Ono
    Wei-Lun Tsai
    [J]. La Matematica, 2022, 1 (2): : 395 - 403
  • [6] AN OMEGA-THEOREM FOR RAMANUJAN TAU-FUNCTION
    BALASUBRAMANIAN, R
    MURTY, MR
    [J]. INVENTIONES MATHEMATICAE, 1982, 68 (02) : 241 - 252
  • [7] A generalization of Knopp's Observation on Ramanujan's tau-function
    Pribitkin, Wladimir de Azevedo
    [J]. RAMANUJAN JOURNAL, 2016, 41 (1-3): : 519 - 542
  • [8] THE 4TH MOMENT OF RAMANUJAN TAU-FUNCTION
    MORENO, CJ
    SHAHIDI, F
    [J]. MATHEMATISCHE ANNALEN, 1983, 266 (02) : 233 - 239
  • [9] ON SOME EXPONENTIAL-SUMS CONNECTED WITH RAMANUJAN TAU-FUNCTION
    PERELLI, A
    [J]. MATHEMATIKA, 1984, 31 (61) : 150 - 158
  • [10] Variations of Lehmer's Conjecture for Ramanujan's tau-function
    Balakrishnan, Jennifer S.
    Craig, William
    Ono, Ken
    [J]. JOURNAL OF NUMBER THEORY, 2022, 237 : 3 - 14