Best Monotone Degree Conditions for Graph Properties: A Survey

被引:0
|
作者
D. Bauer
H. J. Broersma
J. van den Heuvel
N. Kahl
A. Nevo
E. Schmeichel
D. R. Woodall
M. Yatauro
机构
[1] Stevens Institute of Technology,Department of Mathematical Sciences
[2] University of Twente,Faculty of EEMCS
[3] London School of Economics,Department of Mathematics
[4] Seton Hall University,Department of Mathematics and Computer Science
[5] San José State University,Department of Mathematics
[6] University of Nottingham,School of Mathematical Sciences
[7] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Best monotone degree conditions; Hamiltonicity; Connectivity; Toughness; -factor; Binding number ;
D O I
暂无
中图分类号
学科分类号
摘要
We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvátal’s well-known degree condition for hamiltonicity is best possible.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [21] SUFFICIENT CONDITIONS FOR EQUALITY OF CONNECTIVITY AND MINIMUM DEGREE OF A GRAPH
    TOPP, J
    VOLKMANN, L
    JOURNAL OF GRAPH THEORY, 1993, 17 (06) : 695 - 700
  • [22] Degree sequence conditions for a graph to be disjoint path coverable
    Sabir, Eminjan
    Meng, Jixiang
    DISCRETE APPLIED MATHEMATICS, 2023, 332 : 62 - 69
  • [23] HAMILTONIAN DEGREE CONDITIONS WHICH IMPLY A GRAPH IS PANCYCLIC
    BAUER, D
    SCHMEICHEL, E
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) : 111 - 116
  • [24] On sufficient degree conditions for a graph to be k-linked
    Kawarabayashi, Ken-Ichi
    Kostochka, Alexandr
    Yu, Gexin
    COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (05): : 685 - 694
  • [25] Some extremal properties of the degree distance of a graph
    Tomescu, I
    DISCRETE APPLIED MATHEMATICS, 1999, 98 (1-2) : 159 - 163
  • [26] Degree conditions for the partition of a graph into cycles, edges and isolated vertices
    Fujita, Shinya
    DISCRETE MATHEMATICS, 2009, 309 (11) : 3534 - 3540
  • [27] Sufficient Degree Conditions for k-Edge-Connectedness of a Graph
    Bauer, D.
    Hakimi, S. L.
    Kahl, N.
    Schmeichel, E.
    NETWORKS, 2009, 54 (02) : 95 - 98
  • [28] Degree sum conditions and vertex-disjoint cycles in graph
    Fujita, Shinya
    Matsumura, Hajime
    Tsugaki, Masao
    Yamashita, Tomoki
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 237 - 251
  • [29] DEGREE OF PIECEWISE MONOTONE INTERPOLATION
    PASSOW, E
    RAYMON, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (02) : 409 - 412
  • [30] COMPUTATION OF BEST MONOTONE APPROXIMATIONS
    LEWIS, JT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A148 - &