Best Monotone Degree Conditions for Graph Properties: A Survey

被引:0
|
作者
D. Bauer
H. J. Broersma
J. van den Heuvel
N. Kahl
A. Nevo
E. Schmeichel
D. R. Woodall
M. Yatauro
机构
[1] Stevens Institute of Technology,Department of Mathematical Sciences
[2] University of Twente,Faculty of EEMCS
[3] London School of Economics,Department of Mathematics
[4] Seton Hall University,Department of Mathematics and Computer Science
[5] San José State University,Department of Mathematics
[6] University of Nottingham,School of Mathematical Sciences
[7] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Best monotone degree conditions; Hamiltonicity; Connectivity; Toughness; -factor; Binding number ;
D O I
暂无
中图分类号
学科分类号
摘要
We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvátal’s well-known degree condition for hamiltonicity is best possible.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [1] Best Monotone Degree Conditions for Graph Properties: A Survey
    Bauer, D.
    Broersma, H. J.
    van den Heuvel, J.
    Kahl, N.
    Nevo, A.
    Schmeichel, E.
    Woodall, D. R.
    Yatauro, M.
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 1 - 22
  • [2] Best monotone degree conditions for binding number
    Bauer, D.
    Yatauro, M.
    Kahl, N.
    Schmeichel, E.
    DISCRETE MATHEMATICS, 2011, 311 (18-19) : 2037 - 2043
  • [3] Best monotone degree conditions for binding number and cycle structure
    Bauer, D.
    Nevo, A.
    Schmeichel, E.
    Woodall, D. R.
    Yatauro, M.
    DISCRETE APPLIED MATHEMATICS, 2015, 195 : 8 - 17
  • [4] Degree monotone paths and graph operations
    2016, Charles Babbage Research Centre (99):
  • [5] MONOTONE BIPARTITE GRAPH PROPERTIES ARE EVASIVE
    YAO, ACC
    SIAM JOURNAL ON COMPUTING, 1988, 17 (03) : 517 - 520
  • [6] THE CRITICAL COMPLEXITY OF ALL (MONOTONE) BOOLEAN FUNCTIONS AND MONOTONE GRAPH PROPERTIES
    WEGENER, I
    INFORMATION AND CONTROL, 1985, 67 (1-3): : 212 - 222
  • [8] Best Monotone Degree Condition for the Hamiltonicity of Graphs with a 2-Factor
    Bauer, D.
    Nevo, A.
    Schmeichel, E.
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1231 - 1248
  • [9] Degree sum conditions in graph pebbling
    Blasiak, Anna
    Schmitt, John
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 83 - 90
  • [10] Best Monotone Degree Condition for the Hamiltonicity of Graphs with a 2-Factor
    D. Bauer
    A. Nevo
    E. Schmeichel
    Graphs and Combinatorics, 2017, 33 : 1231 - 1248