A polynomial characterization of congruence classes

被引:0
|
作者
R. Bělohlávek
I. Chajda
机构
[1] Department of Computer Science,
[2] Technical University of Ostrava,undefined
[3] tř. 17. listopadu,undefined
[4] CZ-708 33 Ostrava-Poruba,undefined
[5] Czech Republic. E-mail: radim.belohlavek@vsb.cz,undefined
[6] Department of Algebra and Geometry,undefined
[7] Palacký University Olomouc,undefined
[8] Tomkova 40,undefined
[9] CZ- 779 00 Olomouc,undefined
[10] Czech Republic. E-mail: chajda@risc.upol.cz,undefined
来源
algebra universalis | 1997年 / 37卷
关键词
Similarity Type; Congruence Class; Finite Algebra; Permutable Variety; Explicit List;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal V}$ \end{document} be a regular and permutable variety and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal A}=(A,F)\in {\cal V}$\end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\emptyset\neq C \subseteq A $\end{document}. We get an explicit list L of polynomials such that C is a congruence class of some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \theta \in Con\, A $\end{document} iff C is closed under all terms of L. Moreover, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal V}$ \end{document} is a finite similarity type, L is finite. If also \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal A \in {\cal V} $ \end{document} is finite, all polynomials of L can be considered to be unary. We get a formula for the estimation of card L. The problem of deciding whether C is a congruence class of a finite algebra is in NP but for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal A \in {\cal V} $\end{document} it is in P.
引用
收藏
页码:235 / 242
页数:7
相关论文
共 50 条