The polynomial method and restricted sums of congruence classes

被引:85
|
作者
Alon, N
Nathanson, MB
Ruzsa, I
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAEL
[2] CUNY,LEHMAN COLL,DEPT MATH,BRONX,NY 10468
[3] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
基金
匈牙利科学研究基金会;
关键词
D O I
10.1006/jnth.1996.0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a simple and general algebraic technique for obtaining results in Additive Number Theory, and apply it to derive various new extensions of the Cauchy-Davenport Theorem. In particular we obtain, for subsets A(0), A(1), ..., A(k) of the finite field Z(p), a tight lower bound on the minimum possible cardinality of {a(0) + a(1), + ... + a(k): a(i) is an element of A(i), a(i) not equal a(j) for 0 less than or equal to i < j less than or equal to k} as a function of the cardinalities of the sets A(i). (C) 1996 Academic Press, Inc.
引用
收藏
页码:404 / 417
页数:14
相关论文
共 50 条
  • [1] A polynomial characterization of congruence classes
    Belohlavek, R
    Chajda, I
    [J]. ALGEBRA UNIVERSALIS, 1997, 37 (02) : 235 - 242
  • [2] A polynomial characterization of congruence classes
    R. Bělohlávek
    I. Chajda
    [J]. algebra universalis, 1997, 37 : 235 - 242
  • [3] SUMS OF PRODUCTS OF CONGRUENCE CLASSES AND OF ARITHMETIC PROGRESSIONS
    Konyagin, Sergei V.
    Nathanson, Melvyn B.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (04) : 625 - 634
  • [4] SUMS OF DISTINCT PRIMES FROM CONGRUENCE CLASSES MODULO 12
    DRESSLER, RE
    MAKOWSKI, A
    PARKER, T
    [J]. MATHEMATICS OF COMPUTATION, 1974, 28 (126) : 651 - 652
  • [5] On the Sums Running over Reduced Residue Classes Evaluated at Polynomial Arguments
    Hassani, Mehdi
    Marie, Mahmoud
    [J]. CONTEMPORARY MATHEMATICS, 2020, 1 (05): : 417 - 422
  • [6] A POLYNOMIAL CONGRUENCE
    CARLITZ, L
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (06): : 704 - &
  • [7] On restricted sums
    Hamidoune, YO
    Lladó, AS
    Serra, O
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (06): : 513 - 518
  • [8] CONGRUENCE OF ORDERS OF APPROXIMATION OF CLASSES WRH-OMEGA-P WITH LINEAR POLYNOMIAL OPERATORS
    BASKAKOV, VA
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1987, (07): : 7 - 11
  • [9] On a restricted linear congruence
    Bibak, Khodakhast
    Kapron, Bruce M.
    Srinivasan, Venkatesh
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (08) : 2167 - 2171
  • [10] Super congruence on harmonic sums
    Yang, Peng
    Cai, Tianxin
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (10) : 2568 - 2581