Discretization and global optimization for mixed integer bilinear programming

被引:0
|
作者
Xin Cheng
Xiang Li
机构
[1] Queen’s University,Department of Chemical Engineering
来源
关键词
Global optimization; Discretization; Mixed-integer bilinear programming; MILP relaxation; Sharp formulation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider global optimization of mixed-integer bilinear programs (MIBLP) using discretization-based mixed-integer linear programming (MILP) relaxations. We start from the widely used radix-based discretization formulation (called R-formulation in this paper), where the base R may be any natural number, but we do not require the discretization level to be a power of R. We prove the conditions under which R-formulation is locally sharp, and then propose an R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^+$$\end{document}-formulation that is always locally sharp. We also propose an H-formulation that allows multiple bases and prove that it is also always locally sharp. We develop a global optimization algorithm with adaptive discretization (GOAD) where the discretization level of each variable is determined according to the solution of previously solved MILP relaxations. The computational study shows the computational advantage of GOAD over general-purpose global solvers BARON and SCIP.
引用
收藏
页码:843 / 867
页数:24
相关论文
共 50 条
  • [21] Elasticities on a Mixed Integer Programming Model for Revenue Optimization
    Lopez-Perez, Jesus
    DIGITAL ERA AND FUZZY APPLICATIONS IN MANAGEMENT AND ECONOMY, 2022, 384 : 153 - 177
  • [22] Fuzzy Programming for Mixed-Integer Optimization Problems
    Lin, Yung-Chin
    Lin, Yung-Chien
    Su, Kuo-Lan
    Lin, Wei-Cheng
    Chen, Tsing-Hua
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 261 - 264
  • [23] Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach
    Luathep, Paramet
    Sumalee, Agachai
    Lam, William H. K.
    Li, Zhi-Chun
    Lo, Hong K.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2011, 45 (05) : 808 - 827
  • [24] Fuzzy programming for mixed-integer optimization problems
    Lin Y.-C.
    Lin Y.-C.
    Su K.-L.
    Lin W.-C.
    Chen T.-H.
    Artificial Life and Robotics, 2011, 16 (2) : 174 - 177
  • [25] Global mixed-integer dynamic optimization
    Chachuat, B
    Singer, AB
    Barton, PI
    AICHE JOURNAL, 2005, 51 (08) : 2235 - 2253
  • [26] Entry Optimization using Mixed Integer Linear Programming
    Baek, Seungmin
    Moon, Sungwon
    Kim, H. Jin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (01) : 282 - 290
  • [27] Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems
    Pedro M. Castro
    Ignacio E. Grossmann
    Journal of Global Optimization, 2014, 59 : 277 - 306
  • [28] Mixed-integer linear programming approach for global discrete sizing optimization of frame structures
    Van Mellaert, R.
    Mela, K.
    Tiainen, T.
    Heinisuo, M.
    Lombaert, G.
    Schevenels, M.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (02) : 579 - 593
  • [29] Global optimization of mixed-integer nonlinear (polynomial) programming problems: the Bernstein polynomial approach
    Patil, Bhagyesh V.
    Nataraj, P. S. V.
    Bhartiya, Sharad
    COMPUTING, 2012, 94 (2-4) : 325 - 343
  • [30] A mixed integer programming-based global optimization framework for analyzing gene expression data
    Felici, Giovanni
    Tripathi, Kumar Parijat
    Evangelista, Daniela
    Guarracino, Mario Rosario
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 69 (03) : 727 - 744