Discretization and global optimization for mixed integer bilinear programming

被引:0
|
作者
Xin Cheng
Xiang Li
机构
[1] Queen’s University,Department of Chemical Engineering
来源
关键词
Global optimization; Discretization; Mixed-integer bilinear programming; MILP relaxation; Sharp formulation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider global optimization of mixed-integer bilinear programs (MIBLP) using discretization-based mixed-integer linear programming (MILP) relaxations. We start from the widely used radix-based discretization formulation (called R-formulation in this paper), where the base R may be any natural number, but we do not require the discretization level to be a power of R. We prove the conditions under which R-formulation is locally sharp, and then propose an R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^+$$\end{document}-formulation that is always locally sharp. We also propose an H-formulation that allows multiple bases and prove that it is also always locally sharp. We develop a global optimization algorithm with adaptive discretization (GOAD) where the discretization level of each variable is determined according to the solution of previously solved MILP relaxations. The computational study shows the computational advantage of GOAD over general-purpose global solvers BARON and SCIP.
引用
收藏
页码:843 / 867
页数:24
相关论文
共 50 条
  • [1] Discretization and global optimization for mixed integer bilinear programming
    Cheng, Xin
    Li, Xiang
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (04) : 843 - 867
  • [2] Mixed-integer bilinear programming problems
    Adams, Warren P.
    Sherali, Hanif D.
    Mathematical Programming, Series A, 1993, 59 (03): : 279 - 305
  • [3] Global optimization of mixed-integer bilevel programming problems
    Gumus, Zeynep H.
    Floudas, Christodoulos A.
    COMPUTATIONAL MANAGEMENT SCIENCE, 2005, 2 (03) : 181 - 212
  • [4] MIXED-INTEGER BILINEAR-PROGRAMMING PROBLEMS
    ADAMS, WP
    SHERALI, HD
    MATHEMATICAL PROGRAMMING, 1993, 59 (03) : 279 - 305
  • [5] An integer linear programming approach for bilinear integer programming
    Freire, Alexandre S.
    Moreno, Eduardo
    Vielma, Juan Pablo
    OPERATIONS RESEARCH LETTERS, 2012, 40 (02) : 74 - 77
  • [6] Nonlinear integer programming and global optimization
    Zhang, LS
    Gao, F
    Zhu, WX
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1999, 17 (02) : 179 - 190
  • [7] An exact penalty global optimization approach for mixed-integer programming problems
    S. Lucidi
    F. Rinaldi
    Optimization Letters, 2013, 7 : 297 - 307
  • [8] An exact penalty global optimization approach for mixed-integer programming problems
    Lucidi, S.
    Rinaldi, F.
    OPTIMIZATION LETTERS, 2013, 7 (02) : 297 - 307
  • [9] Global optimization of robust truss topology via mixed integer semidefinite programming
    Yonekura, Kazuo
    Kanno, Yoshihiro
    OPTIMIZATION AND ENGINEERING, 2010, 11 (03) : 355 - 379
  • [10] A new local and global optimization method for mixed integer quadratic programming problems
    Li, G. Q.
    Wu, Z. Y.
    Quan, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2501 - 2512