The generalized Lu rigidity theorem for submanifolds with parallel mean curvature

被引:0
|
作者
Yan Leng
Hong-Wei Xu
机构
[1] Sun Yat-sen University,School of Mathematics and Computational Sciences
[2] Zhejiang University,Center of Mathematical Sciences
来源
manuscripta mathematica | 2018年 / 155卷
关键词
53C24; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be an n-dimensional oriented compact submanifold with parallel mean curvature in the unit sphere Sn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{n+p}$$\end{document}. Denote by H and S the mean curvature and the squared length of the second fundamental form of M, respectively. We obtain a classification theorem of M if it satisfies S+λ2≤α(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+\lambda _2\le \alpha (n,H)$$\end{document}, where λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2}$$\end{document} is the second largest eigenvalue of the fundamental matrix and α(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (n,H)$$\end{document} is defined as in Theorem B.
引用
收藏
页码:47 / 60
页数:13
相关论文
共 50 条