The generalized Lu rigidity theorem for submanifolds with parallel mean curvature

被引:0
|
作者
Yan Leng
Hong-Wei Xu
机构
[1] Sun Yat-sen University,School of Mathematics and Computational Sciences
[2] Zhejiang University,Center of Mathematical Sciences
来源
manuscripta mathematica | 2018年 / 155卷
关键词
53C24; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be an n-dimensional oriented compact submanifold with parallel mean curvature in the unit sphere Sn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{n+p}$$\end{document}. Denote by H and S the mean curvature and the squared length of the second fundamental form of M, respectively. We obtain a classification theorem of M if it satisfies S+λ2≤α(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+\lambda _2\le \alpha (n,H)$$\end{document}, where λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2}$$\end{document} is the second largest eigenvalue of the fundamental matrix and α(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (n,H)$$\end{document} is defined as in Theorem B.
引用
收藏
页码:47 / 60
页数:13
相关论文
共 50 条
  • [1] The generalized Lu rigidity theorem for submanifolds with parallel mean curvature
    Leng, Yan
    Xu, Hong-Wei
    [J]. MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 47 - 60
  • [2] AN EXTRINSIC RIGIDITY THEOREM FOR SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE IN A SPHERE
    Xu, Hong-We
    Huang, Fei
    Xiang, Fei
    [J]. KODAI MATHEMATICAL JOURNAL, 2011, 34 (01) : 85 - 104
  • [3] A RIGIDITY THEOREM FOR SUBMANIFOLDS WITH PARALLEL MEAN-CURVATURE IN A SPHERE
    XU, HW
    [J]. ARCHIV DER MATHEMATIK, 1993, 61 (05) : 489 - 496
  • [4] Global Rigidity Theorems for Submanifolds with Parallel Mean Curvature
    Pengfei Pan
    Hongwei Xu
    Entao Zhao
    [J]. Acta Mathematica Scientia, 2023, 43 : 169 - 183
  • [5] GLOBAL RIGIDITY THEOREMS FOR SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE
    潘鹏飞
    许洪伟
    赵恩涛
    [J]. Acta Mathematica Scientia, 2023, 43 (01) : 169 - 183
  • [6] GLOBAL RIGIDITY THEOREMS FOR SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE
    Pan, Pengfei
    Xu, Hongwei
    Zhao, Entao
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 169 - 183
  • [7] On the rigidity of spacelike submanifolds with parallel Gaussian mean curvature vector
    Barboza, W. F. C.
    de Lima, H. F.
    [J]. ACTA MATHEMATICA HUNGARICA, 2023, 170 (01) : 323 - 329
  • [8] On the rigidity of spacelike submanifolds with parallel Gaussian mean curvature vector
    W. F. C. Barboza
    H. F. de Lima
    [J]. Acta Mathematica Hungarica, 2023, 170 : 323 - 329
  • [9] Spacelike submanifolds with parallel Gaussian mean curvature vector: rigidity and nonexistence
    Danilo F. da Silva
    Eraldo A. Lima
    Henrique F. de Lima
    [J]. manuscripta mathematica, 2024, 173 : 451 - 462
  • [10] Spacelike submanifolds with parallel Gaussian mean curvature vector: rigidity and nonexistence
    da Silva, Danilo F.
    Lima, Eraldo A., Jr.
    de Lima, Henrique F.
    [J]. MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 451 - 462