Ion-beam formation of electrocatalysts for fuel cells with polymer membrane electrolyte

被引:5
|
作者
Poplavsky V.V. [1 ]
Dorozhko A.V. [1 ]
Matys V.G. [1 ]
机构
[1] Belarusian State Technological University, Minsk
来源
Poplavsky, V.V. (vasily.poplav@tut.by) | 2017年 / Izdatel'stvo Nauka卷 / 11期
关键词
carbon catalyst supports; catalytic layers; electrocatalytic activity; elemental composition; ion beam-assisted deposition of platinum; oxidation of methanol and ethanol; polymer membrane electrolyte;
D O I
10.1134/S1027451017020124
中图分类号
学科分类号
摘要
Active layers of electrocatalysts are prepared by the ion-beam assisted deposition (IBAD) of platinum onto carbon-based AVCarb® Carbon Fiber Paper P50 and Toray Carbon Fiber Paper TGP-H-060 T supports and Nafion® N 115 polymer membrane electrolyte in the mode where the deposited metal ions are used as ions assisting the deposition process. Metal deposition and mixing of the deposited layer with the substrate under an accelerating voltage of 10 kV by the same metal ions are carried out from a neutral fraction of metal vapor and the ionized plasma of a pulsed vacuum-arc discharge, respectively. The composition and microstructure of the surface layers obtained are studied by Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM), electron-probe microanalysis (EPMA), and X-ray fluorescence (XRF) analysis. The platinum concentration in the layers is (0.5–1.5) × 1016 at/cm2. The prepared electrocatalysts exhibit activity in the process of the electrochemical oxidation of methanol and ethanol, which form the basis for the principle of operation of low temperature fuel cells (direct methanol fuel cells (DMFC) and direct ethanol fuel cells (DEFC)). © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:326 / 332
页数:6
相关论文
共 50 条
  • [41] Polymer electrolyte membrane fuel cells: Principles and advances
    Scott K.
    Shukla A.K.
    Reviews in Environmental Science and Bio/Technology, 2004, 3 (3) : 273 - 280
  • [42] Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells
    Johanek, Viktor
    Ostroverkh, Anna
    Fiala, Roman
    Rednyk, Andrii
    Matolin, Vladimir
    JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY, 2016, 2016
  • [43] In situ diagnostics for polymer electrolyte membrane fuel cells
    Hinds, Gareth
    CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 5 (01) : 11 - 19
  • [44] Platinum electrodeposition for polymer electrolyte membrane fuel cells
    Thompson, SD
    Jordan, LR
    Forsyth, M
    ELECTROCHIMICA ACTA, 2001, 46 (10-11) : 1657 - 1663
  • [45] Polymer Electrolyte Membrane Fuel Cells: Characterization and Diagnostics
    Dhanushkodi, S. R.
    Schwager, M.
    Merida, W.
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 547 - 557
  • [46] Effect of contaminants on polymer electrolyte membrane fuel cells
    Zamel, Nada
    Li, Xianguo
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (03) : 292 - 329
  • [47] Mitigation and diagnosis of pin-hole formation in polymer electrolyte membrane fuel cells
    Taylor, Audrey K.
    Smith, Colby
    Neyerlin, K. C.
    JOURNAL OF POWER SOURCES, 2023, 571
  • [48] Temperature Effects in Polymer Electrolyte Membrane Fuel Cells
    Lochner, Tim
    Kluge, Regina M.
    Fichtner, Johannes
    El-Sayed, Hany A.
    Garlyyev, Batyr
    Bandarenka, Aliaksandr S.
    CHEMELECTROCHEM, 2020, 7 (17) : 3545 - 3568
  • [49] High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition
    Saha, Madhu Sudan
    Gulla, Andrea F.
    Allen, Robert J.
    Mukerjee, Sanjeev
    ELECTROCHIMICA ACTA, 2006, 51 (22) : 4680 - 4692
  • [50] Platinum nanoparticles decorated carbon nanofiber hybrids as highly active electrocatalysts for polymer electrolyte membrane fuel cells
    Kaplan, B. Yarar
    Haghmoradi, N.
    Jamil, E.
    Merino, C.
    Gursel, S. Alkan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (13) : 10251 - 10261