Thermal performances of stearic acid/sepiolite composite form-stable phase change materials with improved thermal conductivity for thermal energy storage

被引:0
|
作者
Yuxiang Hong
Wentao Yan
Juan Du
Wenyu Li
Tong Xu
Wei-Biao Ye
机构
[1] Lishui University,Department of Chemistry and Chemical Engineering
[2] Xiangtan University,Department of Process Equipment and Control Engineering, School of Mechanical Engineering
关键词
Form-stable phase change materials; Stearic acid; Sepiolite; Expanded graphite; Thermal energy storage;
D O I
暂无
中图分类号
学科分类号
摘要
To improve leak-proof performance of phase change materials (PCMs), hydrochloric acid-modified sepiolite (SEP) was used to encapsulate stearic acid (SA), and expanded graphite (EG) was employed as fillers to improve thermal conductivity. A series of form-stable PCMs SA/SEP and SA/SEP/EG were prepared by a combination method of direct impregnation and dry pressing with leakage tests being performed. Their crystalline structure, chemical compatibility, microstructure, latent heat, thermal stability and thermal conductivity were characterized by XRD, FT-IR, SEM, DSC, TG and thermal conductivity analysis, respectively. The leakage tests proved that the loaded mass fraction of SA in the SEP/EG could attain to 60%. The DSC experimental results showed that the composite SA60%/SEP/EG (15%) had a relative large melting latent heat of 113.7 J g−1. The thermal conductivity analysis demonstrated that the enhanced ratio of thermal conductivity in SA60%/SEP/EG (15%) was about 9 times to that of SA35%/SEP. In addition, the XRD, FT-IR, SEM and TG results indicated that the as-prepared composites were obtained by a physical mixing process with well chemical compatibility and thermal durability. Compared with the previous studies, the shape-stable SA60%/SEP/EG (15%) holds some competitive advantages.
引用
收藏
页码:3317 / 3329
页数:12
相关论文
共 50 条
  • [31] Stearic-capric acid/porous nanoceramics as a novel form-stable composite phase change material (FSPCM) for thermal energy storage
    Wang, Yingbin
    Miao, Wenjuan
    He, Xingyang
    Li, Xiangguo
    Xiong, Yan
    MATERIALS LETTERS, 2019, 239 : 105 - 108
  • [32] Study on thermal property of lauric-palmitic-stearic acid/vermiculite composite as form-stable phase change material for energy storage
    Zhang, Nan
    Yuan, Yanping
    Li, Tianyu
    Cao, Xiaoling
    Yang, Xiaojiao
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (09): : 1 - 8
  • [33] Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage
    Liu, Peng
    Gu, Xiaobin
    Bian, Liang
    Peng, Lihua
    He, Huichao
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 138 (01) : 359 - 368
  • [34] Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage
    Peng Liu
    Xiaobin Gu
    Liang Bian
    Lihua Peng
    Huichao He
    Journal of Thermal Analysis and Calorimetry, 2019, 138 : 359 - 368
  • [35] Erythritol-Vermiculite form-stable phase change materials for thermal energy storage
    Leng, Guanghui
    Qiao, Geng
    Xu, Guizhi
    Vidal, Thibault
    Ding, Yulong
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 3363 - 3368
  • [36] Form-stable microencapsulated phase change materials for efficient solar thermal energy storage
    Hu, Heng
    Zhang, Haili
    Hong, Shuliang
    MATERIALS LETTERS, 2023, 352
  • [37] Kaolinite-based form-stable phase change materials for thermal energy storage
    Cheng, Hongfei
    Zhou, Yi
    Xu, Peijie
    Zhang, Meng
    Sun, Luyi
    JOURNAL OF ENERGY STORAGE, 2024, 87
  • [38] Thermal storage using form-stable phase-change materials
    Syed, MT
    Kumar, S
    Moallemi, MK
    Naraghi, MN
    ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1997, 39 (05): : 45 - 50
  • [39] Freeze-cast form-stable phase change materials for thermal energy storage
    Noel, John A.
    White, Mary Anne
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 223
  • [40] Thermal storage using form-stable phase-change materials
    Syed, M.Tashfeen
    Kumar, Sunil
    Moallemi, M.Karim
    Naraghi, Mehdi N.
    1997, ASHRAE, Atlanta, GA, United States (39)