Convolutional neural network scoring and minimization in the D3R 2017 community challenge

被引:0
|
作者
Jocelyn Sunseri
Jonathan E. King
Paul G. Francoeur
David Ryan Koes
机构
[1] University of Pittsburgh,Department of Computational & Systems Biology, School of Medicine
关键词
Protein–ligand scoring; Machine learning; Neural networks; Virtual screening; D3R; Drug design data;
D O I
暂无
中图分类号
学科分类号
摘要
We assess the ability of our convolutional neural network (CNN)-based scoring functions to perform several common tasks in the domain of drug discovery. These include correctly identifying ligand poses near and far from the true binding mode when given a set of reference receptors and classifying ligands as active or inactive using structural information. We use the CNN to re-score or refine poses generated using a conventional scoring function, Autodock Vina, and compare the performance of each of these methods to using the conventional scoring function alone. Furthermore, we assess several ways of choosing appropriate reference receptors in the context of the D3R 2017 community benchmarking challenge. We find that our CNN scoring function outperforms Vina on most tasks without requiring manual inspection by a knowledgeable operator, but that the pose prediction target chosen for the challenge, Cathepsin S, was particularly challenging for de novo docking. However, the CNN provided best-in-class performance on several virtual screening tasks, underscoring the relevance of deep learning to the field of drug discovery.
引用
下载
收藏
页码:19 / 34
页数:15
相关论文
共 50 条
  • [21] Protein–ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Panagiotis I. Koukos
    Li C. Xue
    Alexandre M. J. J. Bonvin
    Journal of Computer-Aided Molecular Design, 2019, 33 : 83 - 91
  • [22] D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings
    Zied Gaieb
    Conor D. Parks
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    W. Patrick Walters
    Millard H. Lambert
    Neysa Nevins
    Scott D. Bembenek
    Michael K. Ameriks
    Tara Mirzadegan
    Stephen K. Burley
    Rommie E. Amaro
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1 - 18
  • [23] Monte Carlo on the manifold and MD refinement for binding pose prediction of protein–ligand complexes: 2017 D3R Grand Challenge
    Mikhail Ignatov
    Cong Liu
    Andrey Alekseenko
    Zhuyezi Sun
    Dzmitry Padhorny
    Sergei Kotelnikov
    Andrey Kazennov
    Ivan Grebenkin
    Yaroslav Kholodov
    Istvan Kolosvari
    Alberto Perez
    Ken Dill
    Dima Kozakov
    Journal of Computer-Aided Molecular Design, 2019, 33 : 119 - 127
  • [24] Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3
    Ashutosh Kumar
    Kam Y. J. Zhang
    Journal of Computer-Aided Molecular Design, 2019, 33 : 47 - 59
  • [25] Monte Carlo on the manifold and MD refinement for binding pose prediction of protein-ligand complexes: 2017 D3R Grand Challenge
    Ignatov, Mikhail
    Liu, Cong
    Alekseenko, Andrey
    Sun, Zhuyezi
    Padhorny, Dzmitry
    Kotelnikov, Sergei
    Kazennov, Andrey
    Grebenkin, Ivan
    Kholodov, Yaroslav
    Kolosvari, Istvan
    Perez, Alberto
    Dill, Ken
    Kozakov, Dima
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 119 - 127
  • [26] D3R grand challenge 2015: Evaluation of protein–ligand pose and affinity predictions
    Symon Gathiaka
    Shuai Liu
    Michael Chiu
    Huanwang Yang
    Jeanne A. Stuckey
    You Na Kang
    Jim Delproposto
    Ginger Kubish
    James B. Dunbar
    Heather A. Carlson
    Stephen K. Burley
    W. Patrick Walters
    Rommie E. Amaro
    Victoria A. Feher
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2016, 30 : 651 - 668
  • [27] DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015
    Veronica Salmaso
    Mattia Sturlese
    Alberto Cuzzolin
    Stefano Moro
    Journal of Computer-Aided Molecular Design, 2016, 30 : 773 - 789
  • [28] Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Koukos, Panagiotis I.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 83 - 91
  • [29] D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings
    Gaieb, Zied
    Parks, Conor D.
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Lambert, Millard H.
    Nevins, Neysa
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 1 - 18
  • [30] DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015
    Salmaso, Veronica
    Sturlese, Mattia
    Cuzzolin, Alberto
    Moro, Stefano
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 773 - 789