On the eigenvalues of the Robin Laplacian with a complex parameter

被引:0
|
作者
Sabine Bögli
James B. Kennedy
Robin Lang
机构
[1] Durham University,Department of Mathematical Sciences
[2] Universidade de Lisboa,Grupo de Física Matemática, Faculdade de Ciências
[3] Universität Stuttgart,Institut für Analysis, Dynamik und Modellierung
来源
关键词
Laplacian; Robin boundary conditions; Spectral theory of non-self-adjoint operators; Estimates on eigenvalues; 35J05; 35J25; 35P10; 35P15; 35S05; 47A10; 81Q12;
D O I
暂无
中图分类号
学科分类号
摘要
We study the spectrum of the Robin Laplacian with a complex Robin parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} on a bounded Lipschitz domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. We start by establishing a number of properties of the corresponding operator, such as generation properties, analytic dependence of the eigenvalues and eigenspaces on α∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in {\mathbb {C}}$$\end{document}, and basis properties of the eigenfunctions. Our focus, however, is on bounds and asymptotics for the eigenvalues as functions of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}: we start by providing estimates on the numerical range of the associated operator, which lead to new eigenvalue bounds even in the case α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in {\mathbb {R}}$$\end{document}. For the asymptotics of the eigenvalues as α→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \rightarrow \infty $$\end{document} in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}, in place of the min–max characterisation of the eigenvalues and Dirichlet–Neumann bracketing techniques commonly used in the real case, we exploit the duality between the eigenvalues of the Robin Laplacian and the eigenvalues of the Dirichlet-to-Neumann map. We use this to show that along every analytic curve of eigenvalues, the Robin eigenvalues either diverge absolutely in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} or converge to the Dirichlet spectrum, as well as to classify all possible points of accumulation of Robin eigenvalues for large α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. We also give a comprehensive treatment of the special cases where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an interval, a hyperrectangle or a ball. This leads to the conjecture that on a general smooth domain in dimension d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document} all eigenvalues converge to the Dirichlet spectrum if Reα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Re}}\,\alpha $$\end{document} remains bounded from below as α→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \rightarrow \infty $$\end{document}, while if Reα→-∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Re}}\,\alpha \rightarrow -\infty $$\end{document}, then there is a family of divergent eigenvalue curves, each of which behaves asymptotically like -α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\alpha ^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On the eigenvalues of the Robin Laplacian with a complex parameter
    Bogli, Sabine
    Kennedy, James B.
    Lang, Robin
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [2] Geometric Control of the Robin Laplacian Eigenvalues: The Case of Negative Boundary Parameter
    Bucur, Dorin
    Cito, Simone
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (04) : 4356 - 4385
  • [3] Geometric Control of the Robin Laplacian Eigenvalues: The Case of Negative Boundary Parameter
    Dorin Bucur
    Simone Cito
    [J]. The Journal of Geometric Analysis, 2020, 30 : 4356 - 4385
  • [4] On the honeycomb conjecture for Robin Laplacian eigenvalues
    Bucur, Dorin
    Fragala, Ilaria
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (02)
  • [5] Optimal partitions for Robin Laplacian eigenvalues
    Bucur, Dorin
    Fragala, Ilaria
    Giacomini, Alessandro
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [6] Optimal partitions for Robin Laplacian eigenvalues
    Dorin Bucur
    Ilaria Fragalà
    Alessandro Giacomini
    [J]. Calculus of Variations and Partial Differential Equations, 2018, 57
  • [7] ON THE ROBIN EIGENVALUES OF THE LAPLACIAN IN THE EXTERIOR OF A CONVEX POLYGON
    Pankrashkin, Konstantin
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (01): : 46 - 56
  • [8] EIGENVALUES FOR THE ROBIN LAPLACIAN IN DOMAINS WITH VARIABLE CURVATURE
    Helffer, Bernard
    Kachmar, Ayman
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (05) : 3253 - 3287
  • [9] Clusters of eigenvalues for the magnetic Laplacian with Robin condition
    Goffeng, Magnus
    Kachmar, Ayman
    Sundqvist, Mikael Persson
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)