Clusters of eigenvalues for the magnetic Laplacian with Robin condition

被引:7
|
作者
Goffeng, Magnus [1 ,2 ]
Kachmar, Ayman [3 ]
Sundqvist, Mikael Persson [4 ]
机构
[1] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[3] Lebanese Univ, Dept Math, Fac Sci, Hadath, Lebanon
[4] Lund Univ, Dept Math Sci, Box 118, SE-22100 Lund, Sweden
关键词
SCHRODINGER-OPERATORS; SPECTRAL ASYMPTOTICS; EDGE STATES;
D O I
10.1063/1.4954500
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Schrodinger operator with a constant magnetic field in the exterior of a compact domain in Euclidean space. Functions in the domain of the operator are subject to a boundary condition of the third type (a magnetic Robin condition). In addition to the Landau levels, we obtain that the spectrum of this operator consists of clusters of eigenvalues around the Landau levels and that they do accumulate to the Landau levels from below. We give a precise asymptotic formula for the rate of accumulation of eigenvalues in these clusters, which is independent of the boundary condition. Published by AIP Publishing.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On the honeycomb conjecture for Robin Laplacian eigenvalues
    Bucur, Dorin
    Fragala, Ilaria
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (02)
  • [2] Optimal partitions for Robin Laplacian eigenvalues
    Bucur, Dorin
    Fragala, Ilaria
    Giacomini, Alessandro
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [3] On the eigenvalues of the Robin Laplacian with a complex parameter
    Sabine Bögli
    James B. Kennedy
    Robin Lang
    [J]. Analysis and Mathematical Physics, 2022, 12
  • [4] On the eigenvalues of the Robin Laplacian with a complex parameter
    Bogli, Sabine
    Kennedy, James B.
    Lang, Robin
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [5] Optimal partitions for Robin Laplacian eigenvalues
    Dorin Bucur
    Ilaria Fragalà
    Alessandro Giacomini
    [J]. Calculus of Variations and Partial Differential Equations, 2018, 57
  • [6] ON THE ROBIN EIGENVALUES OF THE LAPLACIAN IN THE EXTERIOR OF A CONVEX POLYGON
    Pankrashkin, Konstantin
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (01): : 46 - 56
  • [7] EIGENVALUES FOR THE ROBIN LAPLACIAN IN DOMAINS WITH VARIABLE CURVATURE
    Helffer, Bernard
    Kachmar, Ayman
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (05) : 3253 - 3287
  • [9] Plummeting and blinking eigenvalues of the Robin Laplacian in a cuspidal domain
    Nazarov, Sergei A.
    Popoff, Nicolas
    Taskinen, Jari
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 2871 - 2893
  • [10] Sum of the negative eigenvalues for the semi-classical Robin Laplacian
    Ayman Kachmar
    Marwa Nasrallah
    [J]. Revista Matemática Complutense, 2020, 33 : 767 - 795