Parametric Studies of Some Operating Variables on Spark-Ignition Engine Performance

被引:0
|
作者
Lucky Anetor
Edward E. Osakue
Christopher Odetunde
机构
[1] Nigerian Defence Academy,Department of Mechanical Engineering
[2] Texas Southern University,Department of Industrial Technology
[3] Kwara State University,Department of Aeronautics and Astronautics Engineering
关键词
Maximum brake torque; Exhaust gas recirculation; Equivalence ratio; Indicated mean effective pressure; Burning rate;
D O I
暂无
中图分类号
学科分类号
摘要
A spark-ignition engine simulation code was used to study the effects of varying the following engine operating parameters—compression ratio, fuel–air equivalence ratio, residual mass fraction, and start of heat release/ignition timing on an individual basis on the performance of a 5.734 L, V-8 spark-ignition engine. The two-zone model was used where the same traverses the charge resulting in burned and unburned zones. The unburned zone contains the reactants (fuel and air), and there is no reaction between the constituents. The burned zone consists of the products of combustion and dissociation. The results of the present work show that maximum pressure and temperature occur at fuel–air equivalence ratio, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} of 1.01. Furthermore, the study shows that retarding or advancing the ignition timing from maximum brake torque causes a reduction in the power output of the cycle (indicated mean effective pressure) and hence in the cycle thermal efficiency as well. In general, it was observed that the computed results under estimated the measured values of the indicated mean effective pressures as follows: at 0.7≤ϕ≤1.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0.7\le \phi \le 1.0$$\end{document}, the computed results were between 5 and 6.86% lower than the measured engine data even though the qualitative trend was in excellent agreement with it, whereas the values of the measured indicated mean effective pressure were about 6.86–16.51% higher than the simulated results for fuel–air equivalence ratio in the range 1.0≤ϕ≤1.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0\le \phi \le 1.4$$\end{document}. The data reported indicate that in the range 0.7≤ϕ≤1.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.7\le \phi \le 1.0$$\end{document} the indicated thermal efficiency, η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}, increases, whereas the indicated thermal efficiency has an approximate inverse relationship with the fuel–air equivalence ratio, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, that is, η∼1/ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \sim 1/\phi $$\end{document} in the range 1.0≤ϕ≤1.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0\le \phi \le 1.4$$\end{document}. The other results from this study are summarized in the conclusion.
引用
收藏
页码:2141 / 2156
页数:15
相关论文
共 50 条
  • [11] FLAME INITIATION IN A SPARK-IGNITION ENGINE
    TAGALIAN, J
    HEYWOOD, JB
    [J]. COMBUSTION AND FLAME, 1986, 64 (02) : 243 - 246
  • [12] Enhancing the performance of a spark-ignition methanol engine with hydrogen addition
    Ji, Changwei
    Zhang, Bo
    Wang, Shuofeng
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (18) : 7490 - 7498
  • [13] PERFORMANCE AND EMISSION CHARACTERISTICS OF HYDROGEN FUELED SPARK-IGNITION ENGINE
    MATHUR, HB
    KHAJURIA, PR
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1984, 9 (08) : 729 - 735
  • [14] Comparison of performance of compact chamber spark-ignition engine with conventional SI engine
    Najjar, Yousef S. H.
    Al-Haddad, Muhannad R.
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (07) : 640 - 646
  • [15] EVALUATION OF ACETYLENE AS A SPARK-IGNITION ENGINE FUEL
    HILDEN, DL
    STEBAR, RF
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 1979, 3 (01) : 59 - 71
  • [16] Influence of plasma-assisted ignition on flame propagation and performance in a spark-ignition engine
    Hwang, Joonsik
    Kim, Wooyeong
    Bae, Choongsik
    [J]. APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2021, 6
  • [17] Energy and exergy analyses of a spark-ignition engine
    Ameri, M.
    Kiaahmadi, F.
    Khanaki, M.
    Nazoktabar, M.
    [J]. INTERNATIONAL JOURNAL OF EXERGY, 2010, 7 (05) : 547 - 563
  • [18] Performance improvements in a longer-stroke, spark-ignition gas engine
    Ogawa, H.
    Kimura, K.
    Sasaki, K.
    Sato, Y.
    Sako, T.
    [J]. INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2011, 12 (03) : 265 - 273
  • [19] Autoignition of pentane isomers in a spark-ignition engine
    Cheng, Song
    Yang, Yi
    Brear, Michael J.
    Kang, Dongil
    Bohac, Stanislav
    Boehman, Andre L.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (03) : 3499 - 3506
  • [20] Boundary Learning for Spark-Ignition Engine Control
    Zhao, Kai
    Shen, Tielong
    [J]. PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 241 - 246