On spherical harmonics based numerical quadrature over the surface of a sphere

被引:0
|
作者
Bengt Fornberg
Jordan M. Martel
机构
[1] University of Colorado at Boulder,Department of Applied Mathematics
[2] University of Colorado at Boulder,Leeds School of Business
来源
关键词
Quadrature; Sphere; Spherical harmonics; ME nodes; MD nodes; Gaussian quadrature; 65D30; 65D32; 41A55;
D O I
暂无
中图分类号
学科分类号
摘要
It has been suggested in the literature that different quasi-uniform node sets on a sphere lead to quadrature formulas of highly variable quality. We analyze here the nature of these variations, and describe an easy-to-implement least-squares remedy for previously problematic cases. Quadrature accuracies are then compared for different node sets ranging from fully random to those based on Gaussian quadrature concepts.
引用
收藏
页码:1169 / 1184
页数:15
相关论文
共 50 条
  • [1] On spherical harmonics based numerical quadrature over the surface of a sphere
    Fornberg, Bengt
    Martel, Jordan M.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (5-6) : 1169 - 1184
  • [2] Numerical Quadrature over the Surface of a Sphere
    Reeger, Jonah A.
    Fornberg, Bengt
    [J]. STUDIES IN APPLIED MATHEMATICS, 2016, 137 (02) : 174 - 188
  • [3] Quadrature over the sphere
    Atkinson, K
    Sommariva, A
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 20 : 104 - 118
  • [4] Interpolation on the cubed sphere with spherical harmonics
    Jean-Baptiste Bellet
    Matthieu Brachet
    Jean-Pierre Croisille
    [J]. Numerische Mathematik, 2023, 153 : 249 - 278
  • [5] Interpolation on the cubed sphere with spherical harmonics
    Bellet, Jean-Baptiste
    Brachet, Matthieu
    Croisille, Jean-Pierre
    [J]. NUMERISCHE MATHEMATIK, 2023, 153 (2-3) : 249 - 278
  • [7] Stator Magnetic Field Analysis of Reaction Sphere Based on Spherical Harmonics
    Li B.
    Zhang S.
    Li G.
    Li H.
    [J]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2018, 33 (23): : 5442 - 5448
  • [8] Multipliers of spherical harmonics and energy of measures on the sphere
    Hare, KE
    Roginskaya, M
    [J]. ARKIV FOR MATEMATIK, 2003, 41 (02): : 281 - 294
  • [9] Filtering on the Unit Sphere Using Spherical Harmonics
    Pfaff, Florian
    Kurz, Gerhard
    Hanebeck, Uwe D.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2017, : 124 - 130
  • [10] Numerical evolutions of fields on the 2-sphere using a spectral method based on spin-weighted spherical harmonics
    Beyer, Florian
    Daszuta, Boris
    Frauendiener, Joerg
    Whale, Ben
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (07)