Filtering on the Unit Sphere Using Spherical Harmonics

被引:0
|
作者
Pfaff, Florian [1 ]
Kurz, Gerhard [1 ]
Hanebeck, Uwe D. [1 ]
机构
[1] Karlsruhe Inst Technol, Intelligent Sensor Actuator Syst Lab ISAS, Inst Anthropomat & Robot, Karlsruhe, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For manifolds with topologies that strongly differ from the standard topology of Rn, using common filters created for linear domains can yield misleading results. While there is a lot of ongoing research on estimation on the unit circle, higher-dimensional problems particularly pose a challenge. One important generalization of the unit circle is the unit hypersphere. In this paper, we propose a recursive Bayesian estimator for the unit sphere S-2 based on spherical harmonics for arbitrary likelihood functions and rotationally symmetric system noises. In our evaluation, the proposed filter outperforms the particle filter in a target tracking scenario on the sphere.
引用
收藏
页码:124 / 130
页数:7
相关论文
共 50 条
  • [1] Spherical Harmonics and Approximations on the Unit Sphere: An Introduction Preface
    Atkinson, Kendall
    Han, Weimin
    [J]. SPHERICAL HARMONICS AND APPROXIMATIONS ON THE UNIT SPHERE: AN INTRODUCTION, 2012, 2044 : V - +
  • [2] Orbiting below the Brillouin sphere using shifted spherical harmonics
    Cunningham, David
    Russell, Ryan P.
    Lo, Martin W.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2024, 136 (05):
  • [3] Interpolation on the cubed sphere with spherical harmonics
    Jean-Baptiste Bellet
    Matthieu Brachet
    Jean-Pierre Croisille
    [J]. Numerische Mathematik, 2023, 153 : 249 - 278
  • [4] Interpolation on the cubed sphere with spherical harmonics
    Bellet, Jean-Baptiste
    Brachet, Matthieu
    Croisille, Jean-Pierre
    [J]. NUMERISCHE MATHEMATIK, 2023, 153 (2-3) : 249 - 278
  • [5] 3D surface filtering using spherical harmonics
    Zhou, K
    Bao, HJ
    Shi, JY
    [J]. COMPUTER-AIDED DESIGN, 2004, 36 (04) : 363 - 375
  • [6] Multipliers of spherical harmonics and energy of measures on the sphere
    Hare, KE
    Roginskaya, M
    [J]. ARKIV FOR MATEMATIK, 2003, 41 (02): : 281 - 294
  • [7] Explicit vector spherical harmonics on the 3-sphere
    Achour, J. Ben
    Huguet, E.
    Queva, J.
    Renaud, J.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [8] Least squares spherical harmonics approximation on the Cubed Sphere
    Bellet, Jean-Baptiste
    Croisille, Jean -Pierre
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 429
  • [9] EXPERIMENTAL-DETERMINATION OF THE VOLUME OF A CRYSTALLINE SILICON SPHERE USING SPHERICAL-HARMONICS
    SAKUMA, A
    FUJII, K
    TANAKA, M
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 1994, 5 (10) : 1233 - 1238
  • [10] Spatio-Spectral Analysis on the Sphere Using Spatially Localized Spherical Harmonics Transform
    Khalid, Zubair
    Durrani, Salman
    Sadeghi, Parastoo
    Kennedy, Rodney A.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1487 - 1492