Convergence of two conservative high-order accurate difference schemes for the generalized Rosenau–Kawahara-RLW equation

被引:2
|
作者
Ahlem Ghiloufi
Mohamed Rahmeni
Khaled Omrani
机构
[1] Taif University,Mathematics Department, Khurmah University College
[2] Université de Sousse,Institut Supérieur des Sciences Appliquées et de Technologie de Sousse
来源
关键词
Rosenau–Kawahara-RLW equation; Nonlinear difference scheme; Linearized difference scheme; Solitary wave solutions; Conservation laws; Fourth-order accuracy; Unique solvability; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present two high-order accurate difference schemes for the generalized Rosenau–Kawahara-RLW equation. The proposed schemes guarantee the conservation of the discrete energy. The unique solvability of the difference solution is proved. A priori error estimates for the numerical solution is derived. Convergence and stability of the difference schemes are proved. The convergence order is O(h4+k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{4} + k^{2} )$$\end{document} in the uniform norm is discussed without any restrictions on the mesh sizes. Finally, numerical experiments are carried out to support the theoretical claims.
引用
收藏
页码:617 / 632
页数:15
相关论文
共 50 条