Proton uptake kinetics and electromotive force in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode material with e−/O2−/H+ three mobile carriers for protonic ceramic fuel cells

被引:0
|
作者
Piaopiao Wang
Dang Xu
Jigui Cheng
Tao Hong
机构
[1] Hefei University of Technology,School of Materials Science and Engineering
[2] Research Centre for Powder Metallurgy Engineering and Technology of Anhui Province,undefined
来源
Ionics | 2021年 / 27卷
关键词
Proton uptake; Triple conductor; Electromotive force; Protonic ceramic fuel cell;
D O I
暂无
中图分类号
学科分类号
摘要
BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) as a mixed electron, oxygen ion, and proton-conducting cathode materials is of particular interest as it leads to lower operation temperature for protonic ceramic fuel cells (PCFCs). This work investigates the proton uptake kinetics and electromotive force of BCFZY material with the predominant proton uptake reactions as hydrogenation by using electrical conductivity relaxation method. The deviation in proton uptake kinetics affected by oxygen partial pressure and water pressure is analyzed. The electromotive force induced by water partial pressure change is calculated based on the Nernst equation. The research implications of electron/oxygen ion/proton triple conductor materials for application in PCFCs have also been discussed.
引用
收藏
页码:1185 / 1192
页数:7
相关论文
共 50 条
  • [41] Proton surface exchange kinetics of perovskite triple conducting thin films for protonic ceramic electrolysis cells: BaPr0.9Y0.1O3-δ (BPY) vs. Ba1-xCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY)
    Lee, Jongmin
    Buckner, Haley B.
    Perry, Nicola H.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (25) : 15412 - 15429
  • [42] Electrochemical Performance and Enhancement of Hydration Kinetics on BaCo0.7Fe0.2Zr0.1O3-d Cathode for Protonic Ceramic Fuel Cells
    Li, Haowei
    Li, Jun
    Wang, Xiaoyu
    Xie, Caiyue
    Wang, Yifei
    Ding, Xifeng
    ACS APPLIED ENERGY MATERIALS, 2023, : 8966 - 8975
  • [43] Accelerated oxygen reduction kinetics in BaCo0.4Fe0.4 Zr0.2O3-δ cathode via doping with a trace amount of tungsten for protonic ceramic fuel cells
    Yang, Jiamin
    Zhou, Caixia
    Zheng, Shuqin
    Zhang, Limin
    CERAMICS INTERNATIONAL, 2024, 50 (22) : 44935 - 44942
  • [44] Boosting the Activity of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Perovskite for Oxygen Reduction Reactions at Low-to-Intermediate Temperatures through Tuning B-Site Cation Deficiency
    Kuai, Xu
    Yang, Guangming
    Chen, Yubo
    Sun, Hainan
    Dai, Jie
    Song, Yufei
    Ran, Ran
    Wang, Wei
    Zhou, Wei
    Shao, Zongping
    ADVANCED ENERGY MATERIALS, 2019, 9 (38)
  • [45] Design of a functional steam electrode for Proton-conducting ceramic electrolysis cells based on BaCo0.4Fe0.4Zr0.2O3-δ : BaZr0.7Ce0.2Y0.1O3-δ composite
    Dwivedi, Shivam Kumar
    Schaefer, Laura-Alena
    Zeng, Yuan
    Sohn, Yoo Jung
    Malzbender, Juergen
    Beyer, Andreas
    Becker, Celina
    Volz, Kerstin
    Menzler, Norbert H.
    Guillon, Olivier
    Ivanova, Mariya E.
    Kumar, Ravi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (11)
  • [46] Enhanced La0.6Sr0.4Co0.2Fe0.8O3-δ-based cathode performance by modification of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte surface in protonic ceramic fuel cells
    Shimada, Hiroyuki
    Yamaguchi, Yuki
    Sumi, Hirofumi
    Mizutani, Yasunobu
    CERAMICS INTERNATIONAL, 2021, 47 (11) : 16358 - 16362
  • [47] BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells
    Yu, Yingqin
    Yu, Lixiang
    Shao, Kang
    Li, Yihang
    Maliutina, Kristina
    Yuan, Wenxiang
    Wu, Qixing
    Fan, Liangdong
    CERAMICS INTERNATIONAL, 2020, 46 (08) : 11811 - 11818
  • [48] Ca-containing Ba0.95Ca0.05Co0.4Fe0.4Zr0.1Y0.1O3-δ cathode with high CO2-poisoning tolerance for proton-conducting solid oxide fuel cells
    Li, Jun
    Hou, Jie
    Lu, Ying
    Wang, Qi
    Xi, Xiuan
    Fan, Yun
    Fu, Xian-Zhu
    Luo, Jing-Li
    JOURNAL OF POWER SOURCES, 2020, 453
  • [49] Investigation of the special surface state of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ vs Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ for high oxygen catalysis activity on the intermediate-temperature solid oxide fuel cell
    Wang, Xiaojing
    Zhang, Tonghuan
    Qiu, Peng
    Qi, Huiying
    Tu, Baofeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 1136 - 1144
  • [50] LaCoO3: Promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3-δ electrolyte
    Ricote, Sandrine
    Bonanos, Nikolaos
    Lenrick, Filip
    Wallenberg, Reine
    JOURNAL OF POWER SOURCES, 2012, 218 : 313 - 319