Adaptive feature fusion with attention mechanism for multi-scale target detection

被引:0
|
作者
Moran Ju
Jiangning Luo
Zhongbo Wang
Haibo Luo
机构
[1] Chinese Academy of Sciences,Shenyang Institute of Automation
[2] Chinese Academy of Sciences,Institutes for Robotics and Intelligent Manufacturing
[3] University of Chinese Academy of Sciences,Key Laboratory of Opt
[4] Chinese Academy of Sciences,Electronic Information Processing
[5] The Key Laboratory of Image Understanding and Computer Vision,undefined
[6] McGill University,undefined
来源
关键词
Deep learning; Target detection; Adaptive feature fusion; Attention mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
To detect the targets of different sizes, multi-scale output is used by target detectors such as YOLO V3 and DSSD. To improve the detection performance, YOLO V3 and DSSD perform feature fusion by combining two adjacent scales. However, the feature fusion only between the adjacent scales is not sufficient. It hasn’t made advantage of the features at other scales. What is more, as a common operation for feature fusion, concatenating can’t provide a mechanism to learn the importance and correlation of the features at different scales. In this paper, we propose adaptive feature fusion with attention mechanism (AFFAM) for multi-scale target detection. AFFAM utilizes pathway layer and subpixel convolution layer to resize the feature maps, which is helpful to learn better and complex feature mapping. In addition, AFFAM utilizes global attention mechanism and spatial position attention mechanism, respectively, to learn the correlation of the channel features and the importance of the spatial features at different scales adaptively. Finally, we combine AFFAM with YOLO V3 to build an efficient multi-scale target detector. The comparative experiments are conducted on PASCAL VOC dataset, KITTI dataset and Smart UVM dataset. Compared with the state-of-the-art target detectors, YOLO V3 with AFFAM achieved 84.34% mean average precision (mAP) at 19.9 FPS on PASCAL VOC dataset, 87.2% mAP at 21 FPS on KITTI dataset and 99.22% mAP at 20.6 FPS on Smart UVM dataset which outperforms other advanced target detectors.
引用
收藏
页码:2769 / 2781
页数:12
相关论文
共 50 条
  • [21] Small Object Detection using Multi-scale Feature Fusion and Attention
    Liu, Baokai
    Du, Shiqiang
    Li, Jiacheng
    Wang, Jianhua
    Liu, Wenjie
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7246 - 7251
  • [22] Text Detection Algorithm Based on Multi-Scale Attention Feature Fusion
    She, Xiangyang
    Liu, Zhe
    Dong, Lihong
    [J]. Computer Engineering and Applications, 2024, 60 (01) : 198 - 206
  • [23] Multi-Scale Feature Attention Fusion for Image Splicing Forgery Detection
    Liang, Enji
    Zhang, Kuiyuan
    Hua, Zhongyun
    Jia, Xiaohua
    [J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 21 (01)
  • [24] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [25] Hierarchical Feature Fusion With Text Attention For Multi-scale Text Detection
    Liu, Chao
    Zou, Yuexian
    Guan, Wenjie
    [J]. 2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [26] Substation instrumentation target detection based on multi-scale feature fusion
    Feng, Qiaosheng
    Huang, Li
    Sun, Ying
    Tong, Xiliang
    Liu, Xin
    Xie, Yuanmin
    Li, Jun
    Fan, Hanwen
    Chen, Baojia
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (23):
  • [27] Pedestrian detection algorithm based on multi-scale feature extraction and attention feature fusion
    Xia, Hao
    Ma, Jun
    Ou, Jiayu
    Lv, Xinyao
    Bai, Chengjie
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 121
  • [28] Multi-Scale Feature Attention-DEtection TRansformer: Multi-Scale Feature Attention for security check object detection
    Sima, Haifeng
    Chen, Bailiang
    Tang, Chaosheng
    Zhang, Yudong
    Sun, Junding
    [J]. IET COMPUTER VISION, 2024, 18 (05) : 613 - 625
  • [29] Multi-Scale Feature Fusion Based Adaptive Object Detection for UAV
    Liu Fang
    Wu Zhiwei
    Yang Anzhe
    Han Xiao
    [J]. ACTA OPTICA SINICA, 2020, 40 (10)
  • [30] A Video Target Re-Recognition Method Based on Adaptive Attention Enhancement and Multi-Scale Feature Fusion
    Xu, Zhiming
    Chen, Jinhuang
    Chen, Zhaoqi
    Zou, Jiajun
    Wang, Mengbo
    Qiu, Zemin
    [J]. IEEE ACCESS, 2024, 12 : 9392 - 9399