One invariant measure and different poisson brackets for two non-holonomic systems

被引:0
|
作者
Andrey V. Tsiganov
机构
[1] St. Petersburg State University,
来源
Regular and Chaotic Dynamics | 2012年 / 17卷
关键词
non-holonomic mechanics; Chaplygin’s rolling ball; Poisson brackets; 37J60; 37J35; 53D17; 70E18; 70F25; 70H45;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the non-holonomic Chaplygin and the Borisov-Mamaev-Fedorov systems, for which symplectic forms are different deformations of the square root from the corresponding invariant volume form. In both cases second Poisson bivectors are determined by L-tensors with non-zero torsion on configuration space, in contrast with the well-known Eisenhart-Benenti and Turiel constructions.
引用
收藏
页码:72 / 96
页数:24
相关论文
共 50 条
  • [1] One invariant measure and different poisson brackets for two non-holonomic systems
    Tsiganov, Andrey V.
    REGULAR & CHAOTIC DYNAMICS, 2012, 17 (01): : 72 - 96
  • [2] Poisson structures for reduced non-holonomic systems
    Ramos, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (17): : 4821 - 4842
  • [3] Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds
    A. V. Bolsinov
    A. V. Borisov
    I. S. Mamaev
    Regular and Chaotic Dynamics, 2011, 16 : 443 - 464
  • [4] Hamiltonization of Non-Holonomic Systems in the Neighborhood of Invariant Manifolds
    Bolsinov, A. V.
    Borisov, A. V.
    Mamaev, I. S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 443 - 464
  • [5] Non-holonomic dynamics and Poisson geometry
    Borisov, A. V.
    Mamaev, I. S.
    Tsiganov, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (03) : 481 - 538
  • [6] INVARIANT IMAGES OF NON-HOLONOMIC SURFACE
    LISNYAK, VS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1970, (01): : 13 - &
  • [7] On a projective invariant of a non-holonomic surface
    Wang, HC
    ANNALS OF MATHEMATICS, 1943, 44 : 562 - 571
  • [8] Poisson's theorem in non-holonomic coordinates
    Dobronravov, VV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1944, 44 : 231 - 234
  • [9] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    RAMIREZ, R
    HADRONIC JOURNAL, 1983, 6 (06): : 1693 - 1704
  • [10] On Generalized Non-holonomic Systems
    P. Balseiro
    J. E. Solomin
    Letters in Mathematical Physics, 2008, 84 : 15 - 30