On a projective invariant of a non-holonomic surface

被引:0
|
作者
Wang, HC [1 ]
机构
[1] Tsing Hus Univ, Kunming, Peoples R China
关键词
D O I
10.2307/1968981
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:562 / 571
页数:10
相关论文
共 50 条
  • [1] INVARIANT IMAGES OF NON-HOLONOMIC SURFACE
    LISNYAK, VS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1970, (01): : 13 - &
  • [2] THE PROJECTIVE DEFORMATION OF NON-HOLONOMIC SURFACES
    WANG, HC
    DUKE MATHEMATICAL JOURNAL, 1947, 14 (01) : 159 - 166
  • [3] Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds
    A. V. Bolsinov
    A. V. Borisov
    I. S. Mamaev
    Regular and Chaotic Dynamics, 2011, 16 : 443 - 464
  • [4] Hamiltonization of Non-Holonomic Systems in the Neighborhood of Invariant Manifolds
    Bolsinov, A. V.
    Borisov, A. V.
    Mamaev, I. S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 443 - 464
  • [5] Non-holonomic control II : Non-holonomic quantum devices
    Brion, E
    Akulim, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 70 - 79
  • [6] A Class of Non-Holonomic Projective Connections on Sub-Riemannian Manifolds
    Han, Yanling
    Fu, Fengyun
    Zhao, Peibiao
    FILOMAT, 2017, 31 (05) : 1295 - 1303
  • [7] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [8] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [9] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442
  • [10] On non-holonomic connexions
    Schouten, JA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299