How to Allocate Goods in an Online Market?

被引:0
|
作者
Yossi Azar
Niv Buchbinder
Kamal Jain
机构
[1] Tel Aviv University,School of Computer Science
[2] Tel Aviv University,Statistics and Operations Research Department
[3] eBay Research Labs,undefined
来源
Algorithmica | 2016年 / 74卷
关键词
Online algorithm; Allocation; Social welfare; Fairness; Market equilibrium;
D O I
暂无
中图分类号
学科分类号
摘要
We study an online version of linear Fisher market. In this market there are m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} buyers and a set of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} dividable goods to be allocated to the buyers. The utility that buyer i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document} derives from good j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j$$\end{document} is uij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{ij}$$\end{document}. Given an allocation U^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{U}$$\end{document} in which buyer i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document} has utility U^i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{U}_i$$\end{document} we study a quality measure that is based on taking an average of the ratios Ui/U^i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{i}/\hat{U}_i$$\end{document} with respect to any other allocation U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document}. Market equilibrium allocation is the optimal solution with respect to this measure. Our setting is online and so the allocation of each good should be done without any knowledge of the upcoming goods. We design an online algorithm for the problem that is only worse by a logarithmic factor than any other solution with respect to this quality measure, and in particular competes with the market equilibrium allocation. We prove a tight lower bound which shows that our algorithm is optimal up to constants. Our algorithm uses a primal dual convex programming scheme. To the best of our knowledge this is the first time that such a scheme is used in the online framework.
引用
收藏
页码:589 / 601
页数:12
相关论文
共 50 条
  • [31] How to allocate funds within the army
    Haapalinna, K
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 144 (01) : 224 - 233
  • [32] How do firms make money selling digital goods online?
    Lambrecht, Anja
    Goldfarb, Avi
    Bonatti, Alessandro
    Ghose, Anindya
    Goldstein, Daniel G.
    Lewis, Randall
    Rao, Anita
    Sahni, Navdeep
    Yao, Song
    MARKETING LETTERS, 2014, 25 (03) : 331 - 341
  • [33] How do firms make money selling digital goods online?
    Anja Lambrecht
    Avi Goldfarb
    Alessandro Bonatti
    Anindya Ghose
    Daniel G. Goldstein
    Randall Lewis
    Anita Rao
    Navdeep Sahni
    Song Yao
    Marketing Letters, 2014, 25 : 331 - 341
  • [34] HOW SHOULD THE GOVERNMENT ALLOCATE ITS TAX REVENUES BETWEEN PRODUCTIVITY-ENHANCING AND UTILITY-ENHANCING PUBLIC GOODS?
    Economides, George
    Park, Hyun
    Philippopoulos, Apostolis
    MACROECONOMIC DYNAMICS, 2011, 15 (03) : 336 - 364
  • [35] How to balance the dilemma in online technology market for sellers?
    Xu, Lin
    PROCEEDINGS OF THE 2019 4TH INTERNATIONAL CONFERENCE ON SOCIAL SCIENCES AND ECONOMIC DEVELOPMENT (ICSSED 2019), 2019, 314 : 353 - 360
  • [36] How does an online influencer manipulate the stock market?
    Zhang, Zhigang
    Zhang, Qiang
    Liu, Shancun
    Wang, Jiarui
    FINANCE RESEARCH LETTERS, 2023, 58
  • [37] The luxury goods market
    Centorrino, M
    PONTE, 2000, 56 (05) : 3 - 6
  • [38] Getting the goods to market
    Quadrem North America, Quadrem International, Ltd., Amsterdam, Netherlands
    不详
    Canadian Mining Journal, 2008, 129 (SUPPL.) : 14 - 15
  • [39] THE MARKET OF SYMBOLIC GOODS
    BOURDIEU, P
    POETICS, 1985, 14 (1-2) : 13 - 44
  • [40] Selling mechanisms for perishable goods: An empirical analysis of an online resale market for event tickets
    Waisman, Caio
    QME-QUANTITATIVE MARKETING AND ECONOMICS, 2021, 19 (02): : 127 - 178