Asymptotic expansions of solutions of the Cauchy problem for nonlinear parabolic equations

被引:0
|
作者
Kazuhiro Ishige
Tatsuki Kawakami
机构
[1] Tohoku University,Mathematical Institute
[2] Osaka Prefecture University,Department of Mathematical Sciences
来源
关键词
Cauchy Problem; Asymptotic Expansion; Gauss Kernel; Parabolic System; Decay Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the Cauchy problem for the nonlinear parabolic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial _t}u| = \vartriangle u + F(x,t,u,\nabla u){\text{ in }}{{\text{R}}^N} \times (0,\infty ),{\text{ }}u(x,0) = \varphi (x){\text{ in }}{{\text{R}}^N},$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{gathered} N \geqslant 1, \hfill \\ F \in C(R^N \times (0,\infty ) \times R \times R^N ), \hfill \\ \phi \in L^\infty (R^N ) \cap L^1 (R^N ,(1 + |x|^K )dx)forsomeK \geqslant 0 \hfill \\ \end{gathered} $$\end{document}. We give a sufficient condition for the solution to behave like a multiple of the Gauss kernel as t → ∞ and obtain the higher order asymptotic expansions of the solution in W1,q(RN) with 1 ≤ q ≤ ∞.
引用
收藏
页码:317 / 351
页数:34
相关论文
共 50 条