ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF THE CAUCHY PROBLEM FOR NONLINEAR PARABOLIC EQUATIONS

被引:10
|
作者
Ishige, Kazuhiro [1 ]
Kawakami, Tatsuki [2 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
[2] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
来源
关键词
LARGE TIME BEHAVIOR; CONVECTION-DIFFUSION EQUATIONS; HEAT-EQUATION; CHEMOTAXIS; SYSTEM; DECAY; PROFILES;
D O I
10.1007/s11854-013-0038-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the Cauchy problem for the nonlinear parabolic equation tu = 1 u + F(x, t, u,. u) in R N x (0,8), u(x, 0) =.(x) in R N, where N = 1, F. C(R N x (0,8) x R x R N),.. L 8(R N) n L 1 (R N, (1 + | x| K) dx) for some K >= 0. We give a sufficient condition for the solution to behave like a multiple of the Gauss kernel as t -> a and obtain the higher order asymptotic expansions of the solution in W (1,q) (R (N) ) with 1 a parts per thousand currency sign q a parts per thousand currency sign a infinity.
引用
收藏
页码:317 / 351
页数:35
相关论文
共 50 条