Study of forced vibrations of the Kelvin-Voigt model with an asymmetric spring

被引:0
|
作者
R. V. Goldstein
S. V. Kuznetsov
M. A. Khudyakov
机构
[1] Russian Academy of Sciences,Ishlinsky Institute for Problems in Mechanics
来源
Mechanics of Solids | 2015年 / 50卷
关键词
spring with different moduli; vibrations; Kelvin-Voigt model; shock-absorbing system;
D O I
暂无
中图分类号
学科分类号
摘要
We study the damping properties of a modified Kelvin-Voigt system characterized by a spring with different moduli of elasticity and a viscous damper under forced vibrations generated by a harmonic force. We solve the problem by using the Cauchy formalism and by analyzing the properties of the fundamental matrix of the system. The oscillograms, phase portraits, and Poincaré sections corresponding to various parameters of the system are considered.
引用
收藏
页码:294 / 304
页数:10
相关论文
共 50 条
  • [41] Non-linear free vibrations of Kelvin-Voigt visco-elastic beams
    Mahmoodi, S. N.
    Khadem, S. E.
    Kokabi, M.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2007, 49 (06) : 722 - 732
  • [42] BRESSE SYSTEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION
    Contreras, Gabriel Aguilera
    Munoz-Rivera, Jaime E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [43] Damping properties of the viscoelastic material described by fractional Kelvin-Voigt model
    Zhang, Wei
    Shimizu, Nobuyuki
    JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1999, 42 (01): : 1 - 9
  • [44] BACKWARD EULER SCHEMES FOR THE KELVIN-VOIGT VISCOELASTIC FLUID FLOW MODEL
    Pany, Ambit K.
    Paikray, Susanta K.
    Padhy, Sudarsan
    Pani, Amiya K.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (01) : 126 - 151
  • [45] Thermoviscoelasticity in Kelvin-Voigt Rheology at Large Strains
    Mielke, Alexander
    Roubicek, Tomas
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (01) : 1 - 45
  • [46] On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping
    El Arwadi, Toufic
    Youssef, Wael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1831 - 1857
  • [47] Existence and uniqueness for a viscoelastic Kelvin-Voigt model with nonconvex stored energy
    Koumatos, Konstantinos
    Lattanzio, Corrado
    Spirito, Stefano
    Tzavaras, Athanasios E.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2023, 20 (02) : 433 - 474
  • [48] A creep model for frozen soil based on the fractional Kelvin-Voigt's model
    Zhang, Ze
    Huang, Canjie
    Jin, Huijun
    Feng, Wenjie
    Jin, Doudou
    Zhang, Guike
    ACTA GEOTECHNICA, 2022, 17 (10) : 4377 - 4393
  • [49] Modification of Kelvin-Voigt Model in Fractional Order for Thermoviscoelastic Isotropic Material
    Amin, M. M.
    El-Bary, A. A.
    Atef, Haitham M.
    MATERIALS FOCUS, 2018, 7 (06) : 824 - 832
  • [50] The fractional derivative Kelvin-Voigt model of viscoelasticity with and without volumetric relaxation
    Rossikhin, Yu A.
    Shitikova, M. V.
    5TH INTERNATIONAL CONFERENCE ON TOPICAL PROBLEMS OF CONTINUUM MECHANICS WITH A SPECIAL SESSION IN HONOR OF ALEXANDER MANZHIROV'S 60TH BIRTHDAY, 2018, 991