Strong convergence of a proximal-based method for convex optimization

被引:0
|
作者
Vadim Azhmyakov
Werner H. Schmidt
机构
[1] Institute of Mathematics and Computer Sciences,
[2] EMA University of Greifswald,undefined
[3] Jahnstr. 15a,undefined
[4] D-17487 Greifswald,undefined
[5] Germany (e-mail: azmjakov@uni-greifswald.de; e-mail: wschmidt@uni-greifswald.de),undefined
关键词
Key words: Convex optimization, proximal point method, strong convergence, nonexpansive mappings;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we study a proximal-like method for the problem of convex minimization in Hilbert spaces. Using the classical proximal mapping, we construct a new stable iterative procedure. The strong convergence of obtained sequences to the normal solution of the optimization problem is proved. Some results of this paper are extended for uniformly convex Banach spaces.
引用
收藏
页码:393 / 407
页数:14
相关论文
共 50 条
  • [31] A new proximal-based globalization strategy for the Josephy-Newton method for variational inequalities
    Solodov, MV
    Svaiter, BF
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (05): : 965 - 983
  • [32] On the convergence properties of the projected gradient method for convex optimization
    Iusem, A. N.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2003, 22 (01): : 37 - 52
  • [33] Strong Proximal Continuity and Convergence
    Caserta, Agata
    Lucchetti, Roberto
    Naimpally, Som
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [34] On the global convergence of a nonmonotone proximal bundle method for convex nonsmooth minimization
    Hou, Liusheng
    Sun, Wenyu
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02): : 227 - 235
  • [35] On the convergence analysis of a proximal gradient method for multiobjective optimization
    Zhao, Xiaopeng
    Ghosh, Debdas
    Qin, Xiaolong
    Tammer, Christiane
    Yao, Jen-Chih
    [J]. TOP, 2024,
  • [36] Sensitivity Analysis of the Proximal-Based Parallel Decomposition Methods
    Ma, Feng
    Ni, Mingfang
    Zhu, Lei
    Yu, Zhanke
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [37] A proximal center-based decomposition method for multi-agent convex optimization
    Necoara, Ion
    Suykens, Johan A. K.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3077 - 3082
  • [38] On the Parallel Proximal Decomposition Method for Solving the Problems of Convex Optimization
    Semenov, V. V.
    [J]. JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2010, 42 (04) : 13 - 18
  • [39] A DESCENT PROXIMAL LEVEL BUNDLE METHOD FOR CONVEX NONDIFFERENTIABLE OPTIMIZATION
    BRANNLUND, U
    KIWIEL, KC
    LINDBERG, PO
    [J]. OPERATIONS RESEARCH LETTERS, 1995, 17 (03) : 121 - 126
  • [40] Inexact proximal stochastic gradient method for convex composite optimization
    Wang, Xiao
    Wang, Shuxiong
    Zhang, Hongchao
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 68 (03) : 579 - 618