Joint matricial range and joint congruence matricial range of operators

被引:0
|
作者
Pan-Shun Lau
Chi-Kwong Li
Yiu-Tung Poon
Nung-Sing Sze
机构
[1] University of Nevada,Department of Mathematics and Statistics
[2] College of William & Mary,Department of Mathematics
[3] Iowa State University,Department of Mathematics
[4] Peng Cheng Laboratory,Center for Quantum Computing
[5] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
关键词
Congruence numerical range; Star-shaped; Convex; Compact perturbation; 15A60; 47A20; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let A=(A1,…,Am)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}= (A_1, \ldots , A_m)$$\end{document}, where A1,…,Am\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1, \ldots , A_m$$\end{document} are n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} real matrices. The real joint (p, q)-matricial range of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}$$\end{document}, Λp,qR(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varLambda }^{{\mathbb {R}}}_{p,q}(\mathbf{A})$$\end{document}, is the set of m-tuple of q×q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\times q$$\end{document} real matrices (B1,…,Bm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B_1, \ldots , B_m)$$\end{document} such that (X∗A1X,…,X∗AmX)=(Ip⊗B1,…,Ip⊗Bm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^*A_1X, \ldots , X^*A_mX) = (I_p\otimes B_1, \ldots , I_p \otimes B_m)$$\end{document} for some real n×pq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times pq$$\end{document} matrix X satisfying X∗X=Ipq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^*X = I_{pq}$$\end{document}. It is shown that if n is sufficiently large, then the set Λp,qR(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varLambda }^{{\mathbb {R}}}_{p,q}(\mathbf{A})$$\end{document} is non-empty and star-shaped. The result is extended to bounded linear operators acting on a real Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {H}}}}$$\end{document}, and used to show that the joint essential (p, q)-matricial range of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}$$\end{document} is always compact, convex, and non-empty. Similar results for the joint congruence matricial ranges on complex operators are also obtained.
引用
收藏
页码:609 / 626
页数:17
相关论文
共 50 条
  • [41] The joint numerical range of commuting matrices
    Lau, Pan-Shun
    Li, Chi-Kwong
    Poon, Yiu-Tung
    STUDIA MATHEMATICA, 2022, : 241 - 259
  • [42] Minimal self-adjoint compact operators, moment of a subspace and joint numerical range
    Bottazzi, Tamara
    Varela, Alejandro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [43] STUDY OF JOINT CONGRUENCE
    SIMON, WH
    JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1973, A 55 (03): : 652 - &
  • [44] MATRICIAL REPRESENTATION OF RATIONAL POWER OF OPERATORS AND PARA-GRASSMANN EXTENSION OF QUANTUM-MECHANICS
    FLEURY, N
    DETRAUBENBERG, MR
    YAMALEEV, RM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (09): : 1269 - 1280
  • [45] JOINT CONGRUENCE - CORRELATION OF JOINT CONGRUENCE AND THICKNESS OF ARTICULAR-CARTILAGE IN DOGS
    SIMON, WH
    FRIEDENBERG, S
    RICHARDSON, S
    JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1973, A 55 (08): : 1614 - 1620
  • [46] Posttraumatic limitations in range of movement of the knee joint
    Lobenhoffer, P.
    Weber-Spickschen, T. S.
    UNFALLCHIRURG, 2013, 116 (05): : 394 - +
  • [47] Normal range-of-motion of trapeziometacarpal joint
    Goubier, J-N.
    Devun, L.
    Mitton, D.
    Lavaste, F.
    Papadogeorgou, E.
    CHIRURGIE DE LA MAIN, 2009, 28 (05) : 297 - 300
  • [48] Posttraumatic limitations in range of movement of the knee joint
    Lobenhoffer, P.
    Weber-Spickschen, T. S.
    ARTHROSKOPIE, 2013, 26 (04) : 285 - 293
  • [49] ANKLE JOINT DORSIFLEXION - ESTABLISHMENT OF A NORMAL RANGE
    BAGGETT, BD
    YOUNG, G
    JOURNAL OF THE AMERICAN PODIATRIC MEDICAL ASSOCIATION, 1993, 83 (05): : 251 - 254
  • [50] SYSTEMIC JOINT LAXITY AND MANDIBULAR RANGE OF MOVEMENT
    PLUNKETT, GAJ
    WEST, VC
    CRANIO-THE JOURNAL OF CRANIOMANDIBULAR & SLEEP PRACTICE, 1988, 6 (04): : 320 - 326