Joint matricial range and joint congruence matricial range of operators

被引:0
|
作者
Pan-Shun Lau
Chi-Kwong Li
Yiu-Tung Poon
Nung-Sing Sze
机构
[1] University of Nevada,Department of Mathematics and Statistics
[2] College of William & Mary,Department of Mathematics
[3] Iowa State University,Department of Mathematics
[4] Peng Cheng Laboratory,Center for Quantum Computing
[5] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
关键词
Congruence numerical range; Star-shaped; Convex; Compact perturbation; 15A60; 47A20; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let A=(A1,…,Am)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}= (A_1, \ldots , A_m)$$\end{document}, where A1,…,Am\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1, \ldots , A_m$$\end{document} are n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} real matrices. The real joint (p, q)-matricial range of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}$$\end{document}, Λp,qR(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varLambda }^{{\mathbb {R}}}_{p,q}(\mathbf{A})$$\end{document}, is the set of m-tuple of q×q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\times q$$\end{document} real matrices (B1,…,Bm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B_1, \ldots , B_m)$$\end{document} such that (X∗A1X,…,X∗AmX)=(Ip⊗B1,…,Ip⊗Bm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^*A_1X, \ldots , X^*A_mX) = (I_p\otimes B_1, \ldots , I_p \otimes B_m)$$\end{document} for some real n×pq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times pq$$\end{document} matrix X satisfying X∗X=Ipq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^*X = I_{pq}$$\end{document}. It is shown that if n is sufficiently large, then the set Λp,qR(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varLambda }^{{\mathbb {R}}}_{p,q}(\mathbf{A})$$\end{document} is non-empty and star-shaped. The result is extended to bounded linear operators acting on a real Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {H}}}}$$\end{document}, and used to show that the joint essential (p, q)-matricial range of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}$$\end{document} is always compact, convex, and non-empty. Similar results for the joint congruence matricial ranges on complex operators are also obtained.
引用
收藏
页码:609 / 626
页数:17
相关论文
共 50 条
  • [1] Joint matricial range and joint congruence matricial range of operators
    Lau, Pan-Shun
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    ADVANCES IN OPERATOR THEORY, 2020, 5 (03) : 609 - 626
  • [2] Preservation of the joint essential matricial range
    Li, Chi-Kwong
    Paulsen, Vern, I
    Poon, Yiu-Tung
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (05) : 868 - 876
  • [3] Matricial Radius: A Relation of Numerical Radius with Matricial Range
    Kian, M.
    Dehghani, M.
    Sattari, M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (03)
  • [4] The matricial range of E21
    Argerami, Martin
    EXPOSITIONES MATHEMATICAE, 2019, 37 (01) : 48 - 83
  • [5] Convexity and star-shapedness of matricial range
    Lau, Pan-Shun
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (09) : 2497 - 2515
  • [6] Matricial ranges of quadratic operators
    Tso, SH
    Wu, PY
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (03) : 1139 - 1152
  • [7] On the matricial representations of exponential operators
    Int J Math Educ Sci Technol, 4 (591):
  • [8] Uncertainty relations on the joint numerical range of operators
    Sehrawat, Arun
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (08)
  • [9] A MATRICIAL APPROACH TO NUCLEAR REDUCED HANKEL-OPERATORS
    ADAMS, G
    TREBELS, W
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 45 : 536 - 548
  • [10] Spectral functions of singular differential operators with matricial coefficients
    Chebli, H
    Mahmoud, NH
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (01): : 29 - 42