Crowdsourced top-k queries by pairwise preference judgments with confidence and budget control

被引:0
|
作者
Yan Li
Hao Wang
Ngai Meng Kou
Leong Hou U
Zhiguo Gong
机构
[1] University of Macau,State Key Laboratory of Internet of Things for Smart City, Department of Computer and Information Science
[2] Inception Institute of Artificial Intelligence,undefined
[3] Cainiao Smart Logistics Network Limited,undefined
来源
The VLDB Journal | 2021年 / 30卷
关键词
Crowdsourcing; Top-; query; Preference judgments; Confidence; Budget control;
D O I
暂无
中图分类号
学科分类号
摘要
Crowdsourced query processing is an emerging technique that tackles computationally challenging problems by human intelligence. The basic idea is to decompose a computationally challenging problem into a set of human-friendly microtasks (e.g., pairwise comparisons) that are distributed to and answered by the crowd. The solution of the problem is then computed (e.g., by aggregation) based on the crowdsourced answers to the microtasks. In this work, we attempt to revisit the crowdsourced processing of the top-k queries, aiming at (1) securing the quality of crowdsourced comparisons by a certain confidence level and (2) minimizing the total monetary cost. To secure the quality of each paired comparison, we employ statistical tools to estimate the confidence interval from the collected judgments of the crowd, which is then used to guide the aggregated judgment. We propose novel frameworks, SPR and SPR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}, to address the crowdsourced top-k queries. Both SPR and SPR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} are budget-aware, confidence-aware, and effective in producing high-quality top-k results. SPR requires as input a budget for each paired comparison, whereas SPR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} requires only a total budget for the whole top-k task. Extensive experiments, conducted on four real datasets, demonstrate that our proposed methods outperform the other existing top-k processing techniques by a visible difference.
引用
收藏
页码:189 / 213
页数:24
相关论文
共 50 条
  • [41] Top-k Queries with Contextual Fuzzy Preferences
    Bosc, Patrick
    Pivert, Olivier
    Mokhtari, Amine
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2009, 5690 : 847 - 854
  • [42] Top-K Collective Spatial Keyword Queries
    Su, Danni
    Zhou, Xu
    Yang, Zhibang
    Zeng, Yifu
    Gao, Yunjun
    IEEE ACCESS, 2019, 7 : 180779 - 180792
  • [43] Consistent Top-k Queries over Time
    Lee, Mong Li
    Hsu, Wynne
    Li, Ling
    Tok, Wee Hyong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS, 2009, 5463 : 51 - +
  • [44] Toward Scalable Indexing for Top-k Queries
    Lee, Jongwuk
    Cho, Hyunsouk
    Lee, Sunyou
    Hwang, Seung-Won
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (12) : 3103 - 3116
  • [45] Continuous Top-k Dominating Queries in Subspaces
    Kontaki, Maria
    Papadopoulos, Apostolos N.
    Manolopoulos, Yannis
    PCI 2008: 12TH PAN-HELLENIC CONFERENCE ON INFORMATICS, PROCEEDINGS, 2008, : 31 - 35
  • [46] Monochromatic and Bichromatic Reverse Top-k Queries
    Vlachou, Akrivi
    Doulkeridis, Christos
    Kotidis, Yannis
    Norvag, Kjetil
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (08) : 1215 - 1229
  • [47] Reverse spatial top-k keyword queries
    Pritom Ahmed
    Ahmed Eldawy
    Vagelis Hristidis
    Vassilis J. Tsotras
    The VLDB Journal, 2023, 32 : 501 - 524
  • [48] Top-k Manhattan Spatial Skyline Queries
    Son, Wanbin
    Stehn, Fabian
    Knauer, Christian
    Ahn, Hee-Kap
    ALGORITHMS AND COMPUTATION, WALCOM 2014, 2014, 8344 : 22 - 33
  • [49] Cleaning Uncertain Data for Top-k Queries
    Mo, Luyi
    Cheng, Reynold
    Li, Xiang
    Cheung, David W.
    Yang, Xuan S.
    2013 IEEE 29TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2013, : 134 - 145
  • [50] Group Formation Based on Crowdsourced Top-k Recommendation
    Gao, Yunpeng
    Cai, Wei
    Liang, Kuiyang
    WEB AND BIG DATA, 2017, 10612 : 204 - 213