One-dimensional scalar wave propagation in multi-region domains by the boundary element method

被引:0
|
作者
J. A. M. Carrer
W. J. Mansur
机构
[1] Universidade Federal do Paraná,PPGMNE: Programa de Pós
[2] Universidade Federal do Rio de Janeiro,Graduação em Métodos Numéricos em Engenharia
关键词
Scalar wave equation; TD-BEM; D-BEM; Sub-regions technique;
D O I
暂无
中图分类号
学科分类号
摘要
Two boundary element method formulations are presented for the analysis of the one-dimensional scalar wave propagation problem in multi-region domains. One of the formulations employs the time-domain fundamental solution; the other, the fundamental solution related to the static problem. The problem domain is constituted of sub-domains with different material properties and, consequently, with different wave propagation velocities. Thus, the sub-region technique, akin to the boundary element method, is used to deal with the non-homogeneous problem. At the end of the article, some examples are presented, illustrating the characteristics of each formulation and their accuracy.
引用
收藏
相关论文
共 50 条
  • [21] Finite element formulations for free field one-dimensional shear wave propagation
    Kim S.-H.
    Kim K.-J.
    Earthquake and Structures, 2024, 26 (02): : 163 - 174
  • [22] An application of the domain decomposition method into the boundary element method for solving the multi-region neutron diffusion equation
    Purwadi, MD
    Tsuji, M
    Narita, M
    Itagaki, M
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1997, 20 (03) : 197 - 204
  • [23] Matrix method for the study of wave propagation in one-dimensional general media
    Carretero, L.
    Perez-Molina, M.
    Acebal, P.
    Blaya, S.
    Fimia, A.
    OPTICS EXPRESS, 2006, 14 (23): : 11385 - 11391
  • [24] Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method
    Franz Chouly
    Pauline Klein
    Numerical Algorithms, 2022, 90 : 631 - 668
  • [25] Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method
    Chouly, Franz
    Klein, Pauline
    NUMERICAL ALGORITHMS, 2022, 90 (02) : 631 - 668
  • [26] Massive scalar field in a one-dimensional oscillating region
    Dittrich, J
    Duclos, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (39): : 8213 - 8230
  • [27] WAVE PROPAGATION IN A ONE-DIMENSIONAL RANDOM MEDIUM
    PAPANICOLAOU, G
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (01) : 13 - +
  • [28] GEOMETRY OF ONE-DIMENSIONAL WAVE-PROPAGATION
    KITANO, M
    PHYSICAL REVIEW A, 1995, 51 (06): : 4427 - 4432
  • [29] Wave propagation in one-dimensional photonic crystals
    Felbacq, D
    Guizal, B
    Zolla, F
    OPTICS COMMUNICATIONS, 1998, 152 (1-3) : 119 - 126
  • [30] Wave propagation in a one-dimensional poroelastic column
    Schanz, M
    Cheng, AHD
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S591 - S592