Modulation of K2P3.1 (TASK-1), K2P9.1 (TASK-3), and TASK-1/3 heteromer by reactive oxygen species

被引:0
|
作者
Justin R. Papreck
Elizabeth A. Martin
Ping Lazzarini
Dawon Kang
Donghee Kim
机构
[1] Rosalind Franklin University of Medicine and Science,Department of Physiology and Biophysics, Chicago Medical School
[2] Gyeongsang National University School of Medicine,Department of Physiology and Institute of Health Sciences
关键词
Background K; channels; Hydrogen peroxide; Reactive oxygen species; Hypoxia; Chemoreceptor cells;
D O I
暂无
中图分类号
学科分类号
摘要
Reactive oxygen species (ROS) generated by mitochondria or NADPH oxidase have been implicated in the inhibition of K+ current by hypoxia in chemoreceptor cells. As TASKs are highly active background K+ channels in these cells, we studied the role of ROS in hypoxia-induced inhibition of TASKs. In HeLa cells expressing TASKs, H2O2 applied to inside-out patches activated TASK-1, TASK-3, and TASK-1/3 heteromer starting at ~16 mM. When applied to cell-attached or outside-out patches, 326 mM H2O2 did not affect TASK activity. Other K2P channels (TREK-1, TREK-2, TASK-2, TALK-1, TRESK) were not affected by H2O2 (tested up to 326 mM). A reducing agent (dithiothreitol) and a cysteine-modifying agent (2-aminoethyl methanethiosulfonate hydrobromide) had no effect on basal TASK activity and did not block the H2O2-induced increase in channel activity. A TASK mutant in which the C-terminus of TASK-3 was replaced with that of TREK-2 showed a normal sensitivity to H2O2. Xanthine/xanthine oxidase mixture used to generate superoxide radical showed no effect on TASK-1, TASK-3, and TASK-1/3 heteromer from either side of the membrane, but it strongly activated TASK-2 from the extracellular side. Acute H2O2 (32–326 mM) exposure did not affect hSlo1/b1(BK) expressed in HeLa cells and BK in carotid body glomus cells. In carotid body glomus cells, adrenal cortical cells, and cerebellar granule neurons that show abundant hypoxia-sensitive TASK activity, H2O2 (>16 mM) activated the channels only when applied intracellularly, similar to that observed with cloned TASKs. These findings show that ROS do not support or inhibit TASK and BK activity and therefore are unlikely to be the hypoxic signal that causes cell excitation via inhibition of these K+ channels.
引用
收藏
页码:471 / 480
页数:9
相关论文
共 50 条
  • [21] Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells
    Kang, D
    Kim, D
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 549A - 550A
  • [22] The human cardiac K2P3.1 (TASK-1) potassium leak channel is a molecular target for the class III antiarrhythmic drug amiodarone
    Gierten, Jakob
    Ficker, Eckhard
    Bloehs, Ramona
    Schweizer, Patrick A.
    Zitron, Edgar
    Scholz, Eberhard
    Karle, Christoph
    Katus, Hugo A.
    Thomas, Dierk
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2010, 381 (03) : 261 - 270
  • [23] Cloning, functional characterization, and remodeling of K2P3.1 (TASK-1) potassium channels in a porcine model of atrial fibrillation and heart failure
    Schmidt, Constanze
    Wiedmann, Felix
    Langer, Clara
    Tristram, Frank
    Anand, Priya
    Wenzel, Wolfgang
    Lugenbiel, Patrick
    Schweizer, Patrick A.
    Katus, Hugo A.
    Thomas, Dierk
    HEART RHYTHM, 2014, 11 (10) : 1798 - 1805
  • [24] The response of the tandem pore potassium channel TASK-3 (K2P9.1) to voltage: gating at the cytoplasmic mouth
    Ashmole, I.
    Vavoulis, D. V.
    Stansfeld, P. J.
    Mehta, Puja R.
    Feng, J. F.
    Sutcliffe, M. J.
    Stanfield, P. R.
    JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (20): : 4769 - 4783
  • [25] Discovery of a Pharmacologically Active Antagonist of the Two-Pore-Domain Potassium Channel K2P9.1 (TASK-3)
    Coburn, Craig A.
    Luo, Yunfu
    Cui, Mingxiang
    Wang, Jiabing
    Soll, Richard
    Dong, Jingchao
    Hu, Bin
    Lyon, Michael A.
    Santarelli, Vincent P.
    Kraus, Richard L.
    Gregan, Yun
    Wang, Yi
    Fox, Steven V.
    Binns, Jacquelyn
    Doran, Scott M.
    Reiss, Duane R.
    Tannenbaum, Pamela L.
    Gotter, Anthony L.
    Meinke, Peter T.
    Renger, John J.
    CHEMMEDCHEM, 2012, 7 (01) : 123 - 133
  • [26] Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells
    Kim, Donghee
    Cavanaugh, Eric J.
    Kim, Insook
    Carroll, John L.
    JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (12): : 2963 - 2975
  • [27] Expression of TASK-1 and TASK-3 channels in non-small cell lung cancer
    Leithner, K.
    Wohlkoenig, C.
    Li, Y.
    Tang, B.
    Nagaraj, C.
    Stacher, E.
    Balint, Z.
    Olschewski, A.
    Olschewski, H.
    EJC SUPPLEMENTS, 2010, 8 (05): : 147 - 147
  • [28] Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA
    Washburn, CP
    Bayliss, DA
    Guyenet, PG
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2003, 138 (01) : 19 - 35
  • [29] The role of protein–protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3
    Markus Kilisch
    Olga Lytovchenko
    Blanche Schwappach
    Vijay Renigunta
    Jürgen Daut
    Pflügers Archiv - European Journal of Physiology, 2015, 467 : 1105 - 1120
  • [30] Carvedilol targets human K2P3.1 (TASK1) K+ leak channels
    Staudacher, K.
    Staudacher, I.
    Ficker, E.
    Seyler, C.
    Gierten, J.
    Kisselbach, J.
    Rahm, A-K
    Trappe, K.
    Schweizer, P. A.
    Becker, R.
    Katus, H. A.
    Thomas, D.
    BRITISH JOURNAL OF PHARMACOLOGY, 2011, 163 (05) : 1099 - 1110