A hybrid self-attention deep learning framework for multivariate sleep stage classification

被引:0
|
作者
Ye Yuan
Kebin Jia
Fenglong Ma
Guangxu Xun
Yaqing Wang
Lu Su
Aidong Zhang
机构
[1] College of Information and Communication Engineering,
[2] Beijing University of Technology,undefined
[3] Beijing Laboratory of Advanced Information Networks,undefined
[4] Beijing Key Laboratory of Computational Intelligence and Intelligent System,undefined
[5] Beijing University of Technology,undefined
[6] Department of Computer Science and Engineering,undefined
[7] State University of New York at Buffalo,undefined
[8] Department of Computer Science,undefined
[9] University of Virginia,undefined
来源
关键词
Attention mechanism; Deep learning; Sleep stage classification; Polysomnography; Multivariate time series;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Multiscale echo self-attention memory network for multivariate time series classification
    Lyu, Huizi
    Huang, Desen
    Li, Sen
    Ma, Qianli
    Ng, Wing W. Y.
    NEUROCOMPUTING, 2023, 520 : 60 - 72
  • [22] Deep Learning Method for Sleep Stage Classification
    Cen, Ling
    Yu, Zhu Liang
    Tang, Yun
    Shi, Wen
    Kluge, Tilmann
    Ser, Wee
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 796 - 802
  • [23] A framework for facial expression recognition using deep self-attention network
    Indolia S.
    Nigam S.
    Singh R.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (07) : 9543 - 9562
  • [24] A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series
    Chambon, Stanislas
    Galtier, Mathieu N.
    Arnal, Pierrick J.
    Wainrib, Gilles
    Gramfort, Alexandre
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (04) : 758 - 769
  • [25] Missing well-log reconstruction using a sequence self-attention deep-learning framework
    Lin, Lei
    Wei, Hao
    Wu, Tiantian
    Zhang, Pengyun
    Zhong, Zhi
    Li, Chenglong
    GEOPHYSICS, 2023, 88 (06) : D391 - D410
  • [26] Kernel Self-Attention for Weakly-supervised Image Classification using Deep Multiple Instance Learning
    Rymarczyk, Dawid
    Borowa, Adriana
    Tabor, Jacek
    Zielinski, Bartosz
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1720 - 1729
  • [27] HybridHash: Hybrid Convolutional and Self-Attention Deep Hashing for Image Retrieval
    He, Chao
    Wei, Hongxi
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 824 - 832
  • [28] CoAt-Mixer: Self-attention deep learning framework for left ventricular hypertrophy using electrocardiography
    Ryu, Ji Seung
    Lee, Solam
    Chu, Yuseong
    Ahn, Min-Soo
    Park, Young Jun
    Yang, Sejung
    PLOS ONE, 2023, 18 (06):
  • [29] SADeepSense: Self-Attention Deep Learning Framework for Heterogeneous On-Device Sensors in Internet of Things Applications
    Yao, Shuochao
    Zhao, Yiran
    Shao, Huajie
    Liu, Dongxin
    Liu, Shengzhong
    Hao, Yifan
    Piao, Ailing
    Hu, Shaohan
    Lu, Su
    Abdelzaher, Tarek F.
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2019), 2019, : 1243 - 1251
  • [30] Multivariate time-series classification of sleep patterns using a hybrid deep learning architecture
    Hong, Jeonghan
    Yoon, Junho
    2017 IEEE 19TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2017,