Faà di Bruno’s Formula and Modular Forms

被引:0
|
作者
Djohra Meguedmi
Ahmed Sebbar
机构
[1] Ecole Nationale Supéprieure de Technologie,IMB, Institut de Mathématiques de Bordeaux
[2] Université Bordeaux I,undefined
来源
关键词
Faà di Bruno’s formula; Lagrange inversion formula ; Eisenstein series; Modular forms;
D O I
暂无
中图分类号
学科分类号
摘要
We show that Faà di Bruno’s formula can play important roles in modular forms theory and in the study of differential operators of the form a(x)ddxn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \displaystyle \left( a(x)\frac{d}{dx} \right) ^n$$\end{document}. We also emphasize the importance of the fundamental forms yk=Δ-k12,Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle y_k= \Delta ^{-\frac{k}{12}}, \Delta $$\end{document} is the discriminant function, making a link between some aspects of differential Galois theory and modular forms.
引用
收藏
页码:409 / 435
页数:26
相关论文
共 50 条
  • [1] FaA di Bruno's Formula and Modular Forms
    Meguedmi, Djohra
    Sebbar, Ahmed
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (02) : 409 - 435
  • [2] Applications of the Formula of Faà di Bruno: Combinatorial Identities and Monotonic Functions
    Horst Alzer
    Omran Kouba
    Results in Mathematics, 2021, 76
  • [3] The symmetric function theorem via the multivariate Faà di Bruno formula
    Siegfried Van Hille
    European Journal of Mathematics, 2023, 9
  • [4] A DISCRETE FAA DI BRUNO'S FORMULA
    Duarte, Pedro
    Torres, Maria Joana
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2012, 7 (02) : 72 - 83
  • [5] Prehistory of Faa di Bruno's formula
    Craik, ADD
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (02): : 119 - 130
  • [6] Faa!di Bruno's formula, lattices, and partitions
    Encinas, LH
    del Rey, AM
    Masqué, JM
    DISCRETE APPLIED MATHEMATICS, 2005, 148 (03) : 246 - 255
  • [7] Five interpretations of Faa di Bruno's formula
    Frabetti, Alessandra
    Manchon, Dominique
    FAA DI BRUNO HOPF ALGEBRAS, DYSON-SCHWINGER EQUATIONS, AND LIE-BUTCHER SERIES, 2015, 21 : 91 - 147
  • [8] A solution for reducing the degree of polynomial composition functions using Faà di Bruno’s formula and Fourier transform
    Elshan Ahani
    Ali Ahani
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [9] The curious history of Faa di Bruno's formula
    Johnson, WP
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (03): : 217 - 234
  • [10] FAA DI BRUNO'S FORMULA AND VOLTERRA SERIES
    Clark, Daniel E.
    Houssineau, Jeremie
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 217 - 219