The symmetric function theorem via the multivariate Faà di Bruno formula

被引:0
|
作者
Siegfried Van Hille
机构
[1] McMaster University,
来源
关键词
Symmetric polynomials; Symmetric functions; Faà di Bruno formula; Stirling numbers; 05A17; 13A50; 26B12;
D O I
暂无
中图分类号
学科分类号
摘要
The symmetric function theorem states that a polynomial that is invariant under permutation of variables, is a polynomial in the elementary symmetric polynomials. We deduce this classical result, in the analytic setting, from the multivariate Faà di Bruno formula. In two variables, this allows us to completely determine all coefficients that occur in the inductive equations.
引用
收藏
相关论文
共 50 条