A Mean Field Game Inverse Problem

被引:0
|
作者
Lisang Ding
Wuchen Li
Stanley Osher
Wotao Yin
机构
[1] University of South Carolina,
来源
关键词
Mean-field game; Inverse problem; Primal-dual algorithm; Bregman iteration;
D O I
暂无
中图分类号
学科分类号
摘要
Mean-field games arise in various fields, including economics, engineering, and machine learning. They study strategic decision-making in large populations where the individuals interact via specific mean-field quantities. The games’ ground metrics and running costs are of essential importance but are often unknown or only partially known. This paper proposes mean-field game inverse-problem models to reconstruct the ground metrics and interaction kernels in the running costs. The observations are the macro motions, to be specific, the density distribution and the velocity field of the agents. They can be corrupted by noise to some extent. Our models are PDE constrained optimization problems, solvable by first-order primal-dual methods. We apply the Bregman iteration method to improve the parameter reconstruction. We numerically demonstrate that our model is both efficient and robust to the noise.
引用
收藏
相关论文
共 50 条
  • [31] Mean field model of a game for power
    Karataieva, Tatiana
    Koshmanenko, Volodymyr
    Krawczyk, Malgorzata J.
    Kulakowski, Krzysztof
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 525 : 535 - 547
  • [32] On the inverse mean first passage matrix problem and the inverse M-matrix problem
    Neumann, Michael
    Sze, Nung-Sing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (07) : 1620 - 1630
  • [33] The inverse mean problem of geometric and contraharmonic means
    Lim, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 : 221 - 229
  • [34] The Inverse Mean Curvature Flow as An Obstacle Problem
    Moser, Roger
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) : 2235 - 2256
  • [35] The inverse problem for the dipole field
    Epp, V.
    Janz, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2008, 266 (17): : 3700 - 3702
  • [36] An inverse field of values problem
    Uhlig, Frank
    INVERSE PROBLEMS, 2008, 24 (05)
  • [37] Inverse problem for multispecies ferromagneticlike mean-field models in phase space with many states
    Fedele, Micaela
    Vernia, Cecilia
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [38] A FULLY DISCRETE SEMI-LAGRANGIAN SCHEME FOR A FIRST ORDER MEAN FIELD GAME PROBLEM
    Carlini, E.
    Silva, F. J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 45 - 67
  • [39] PMP-based numerical solution for mean field game problem of general nonlinear system
    Xu, Fuguo
    Fu, Qiaobin
    Shen, Tielong
    AUTOMATICA, 2022, 146
  • [40] Stability of a mean field game of production adjustment
    Wang, Yanying
    Xin, Baogui
    ASIAN JOURNAL OF CONTROL, 2024, 26 (02) : 717 - 727