Characterization of K-Promoted Ru Catalysts for Ammonia Decomposition Discovered Using High-Throughput Experimentation

被引:0
|
作者
William Pyrz
Rohit Vijay
Jason Binz
Jochen Lauterbach
Douglas J. Buttrey
机构
[1] University of Delaware,Department of Chemical Engineering, Center for Catalytic Science and Technology
来源
Topics in Catalysis | 2008年 / 50卷
关键词
NH; decomposition; KRu; O; hollandite; K-promoted Ru catalysts; TEM; SEM; High-throughput experimentation;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain H2 from low temperature NH3 decomposition using a new hollandite (KRu4O8) catalyst supported on γ-Al2O3 discovered using high-throughput experimentation and advanced TEM/SEM characterization. Relative to the base Ru° catalyst, this new catalyst shows NH3 conversion enhancements of 30–50% at T = 350 °C and decomposition activity at temperatures decreased by 50–100 °C. TEM analysis over the lifetime of the catalyst shows multiple phases and morphologies suggesting that the KRu4O8 behaves either as a new low-temperature decomposition catalyst or as a precursor to the active catalyst.
引用
收藏
页码:180 / 191
页数:11
相关论文
共 50 条
  • [31] Development of multifunctional thin films using high-throughput experimentation methods
    Ruhr-Universität Bochum, Institut für Werkstoffe, Bochum, Germany
    不详
    不详
    Int. J. Mater. Res., 2008, 10 (1144-1149):
  • [32] Discovery and optimization of catalysts using high-throughput approaches
    Lauterbach, Jochen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [33] Optimization of Co containing NSR catalysts using high throughput experimentation
    Vijay, Rohit
    Dellamorte, Joseph C.
    Snively, Christophere M.
    Lauterbach, Jochen
    CHIMICA OGGI-CHEMISTRY TODAY, 2007, 25 (02) : 14 - 16
  • [34] A high-throughput experimentation study of the epoxidation of alkenes with transition-metal-free heterogeneous catalysts
    Pescarmona, Paolo P.
    Jacobs, Pierre A.
    CATALYSIS TODAY, 2008, 137 (01) : 52 - 60
  • [35] Study by high-throughput experimentation of the effect of the pretreatment and precursors on the catalytic activity of tungstated zirconia catalysts
    Hernandez-Pichardo, M. L.
    Montoya de la Fuente, J. A.
    del Angel, P.
    Vargas, A.
    Reza, C.
    CATALYSIS COMMUNICATIONS, 2009, 10 (14) : 1828 - 1834
  • [36] Extending the High-Throughput Experimentation (HTE) Approach to Catalytic Olefin Polymerizations: From Catalysts to Materials
    Vittoria, Antonio
    Urciuoli, Gaia
    Costanzo, Salvatore
    Tammaro, Daniele
    Cannavacciuolo, Felicia Daniela
    Pasquino, Rossana
    Cipullo, Roberta
    Auriemma, Finizia
    Grizzuti, Nino
    Maffettone, Pier Luca
    Busico, Vincenzo
    MACROMOLECULES, 2022, 55 (12) : 5017 - 5026
  • [37] Learning Design Rules for Selective Oxidation Catalysts from High-Throughput Experimentation and Artificial Intelligence
    Foppa, Lucas
    Sutton, Christopher
    Ghiringhelli, Luca M.
    De, Sandip
    Loeser, Patricia
    Schunk, Stephan A.
    Schaefer, Ansgar
    Scheffler, Matthias
    ACS CATALYSIS, 2022, 12 (04) : 2223 - 2232
  • [38] Optimizing the conversion of heavy reformate streams into xylenes with zeolite catalysts by using knowledge base high-throughput experimentation techniques
    Serra, JM
    Guillon, E
    Corma, A
    JOURNAL OF CATALYSIS, 2005, 232 (02) : 342 - 354
  • [39] Development of copper-catalyzed deaminative esterification using high-throughput experimentation
    Shen, Yuning
    Mahjour, Babak
    Cernak, Tim
    COMMUNICATIONS CHEMISTRY, 2022, 5 (01)
  • [40] Synthesis, formulation, and characterization of siloxane–polyurethane coatings for underwater marine applications using combinatorial high-throughput experimentation
    Abdullah Ekin
    Dean C. Webster
    Justin W. Daniels
    Shane J. Stafslien
    Franck Cassé
    James A. Callow
    Maureen E. Callow
    Journal of Coatings Technology and Research, 2007, 4