共 50 条
How could perfluorocarbon affect cytokine storm and angiogenesis in coronavirus disease 2019 (COVID-19): role of hypoxia-inducible factor 1α
被引:0
|作者:
Narges Moasefi
Mehdi Fouladi
Amir Hossein Norooznezhad
Reza Yarani
Adibeh Rahmani
Kamran Mansouri
机构:
[1] University of Medical Sciences,Medical Biology Research Center, Health Technology Institute, Kermanshah
[2] University of Medical Sciences,Department of Molecular Medicine, School of Medicine, Kermanshah
[3] Research Steno Diabetes Center Copenhagen,Translational Type 1 Diabetes Research, Department of Clinical
来源:
Inflammation Research
|
2021年
/
70卷
关键词:
HIF-1α;
Perfluorocarbon;
Hypoxia;
Inflammation;
Cytokine storm;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Coronavirus disease 2019 (COVID-19) pandemic is still a world-class challenge. Inflammation, especially its severe form with excess release of pro-inflammatory cytokines (cytokine storm) which is a life-threatening condition, is among the most important suspects involved in COVID-19 pathogenesis. It has been shown that cytokine storm could cause notable morbidities such as acute respiratory distress syndrome (ARDS) which leads to hypoxia which is significantly associated with mortality of patients with COVID-19. Hypoxia-inducible factor 1α (HIF-1α) which activates following ARDS-induced hypoxia plays a crucial role in pathogenesis of cytokine storm. The expression of tumor necrosis factor α (TNF-α), interleukin 1 β (IL-1β), and IL-6 which are key elements of cytokine storm are by nuclear factor κβ (NFκB). Interestingly, during the hypoxia, HIF-1α activates NFκB to induce expression of pro-angiogenic and pro-inflammatory factors. These released factors starts a autocrine/paracrine loop and causes deterioration of their etiological pathways of expression: cytokine storm and ARDS. To sum up, it seems HIF-1α is an important target to hit to ameliorate the mentioned pathways. Herein, we suggest perfluorocarbons (PFCs) which are among the organofluorine compounds as a possible co-treatment to reduce hypoxemia and then hypoxia. These substances are known for their high gas solving potential that make them able to be used as a synthetic artificial blood product. Due to the potential of PFCs to affect the fountain of important physiopathological pathway such as inflammation a hypoxia through affecting NFκB, they could be considered as multi-target co-treatment for ARD individuals with COVID-19. It is highly suggested to evaluate this hypothesis in following researches.
引用
收藏
页码:749 / 752
页数:3
相关论文