Tri-chalcogenides (Sb2S3/Bi2S3) solar cells with double electron transport layers: design and simulation

被引:0
|
作者
Md Amanullah Saifee
Urosa Latief
Javid Ali
Mohd. Shahid Khan
机构
[1] Department of Physics,
来源
Discover Energy | / 4卷 / 1期
关键词
Tri-chalcogenides; Power conversion efficiency; SCAPS-1D; Solar cell;
D O I
10.1007/s43937-024-00028-6
中图分类号
学科分类号
摘要
To make technology accessible to everyone, it is essential to focus on affordability and durability of the devices. Antimony trisulfide (Sb2S3) and bismuth (III) sulfide (Bi2S3) are low-cost and stable materials that are commonly used in photovoltaic devices due to their non-toxic nature and abundance. These materials are particularly promising for photovoltaic applications as they are effective light-absorbing materials. In this study, we utilized the Solar cell Capacitance Simulator- One-Dimensional (SCAPS-1D) software to investigate the parameters of a double electron transport layer (ETL) solar cell based on Sb2S3/ Bi2S3. The parameters examined included thickness of the absorber layer, overall defect density, density of acceptors, radiative recombination coefficient, series and shunt resistance, and work function of the back contact. The solar cell structure studied was FTO/SnO2/CdS/ Sb2S3 and Bi2S3/Spiro-OMeTAD/Au. By incorporating a SnO2 electron transport layer (ETL) into the double ETL structure of Sb2S3 and Bi2S3 solar cells, we observed a significant enhancement in the power conversion efficiency (PCE). Specifically, the PCE increased to 19.71% for the Sb2S3 solar cell and 24.05% for the Bi2S3 solar cell. In contrast, without SnO2, the single ETL-based CdS solar cell achieved a maximum PCE of 18.27 and 23.05% for Sb2S3 and Bi2S3, respectively.
引用
收藏
相关论文
共 50 条
  • [21] Efficient SnO2/CdS double electron transport layer for Sb2S3 film solar cell
    Su, Mingzhu
    Feng, Zitong
    Feng, Zheng
    Chen, Hanxiao
    Liu, Xingyun
    Wen, Jian
    Liu, Hongri
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 882
  • [22] A single-source approach to Bi2S3 and Sb2S3 nanorods via a hydrothermal treatment
    Xie, G
    Qiao, ZP
    Zeng, MH
    Chen, XM
    Gao, SL
    CRYSTAL GROWTH & DESIGN, 2004, 4 (03) : 513 - 516
  • [23] Construction of a novel heterostructure of Bi2S3/Sb2S3 nanorod with improved sodium storage performances
    Dong, Yangtao
    Murugesan, Balaji
    Lin, Weidi
    Wang, Chao
    Dai, Junjie
    Li, Wenwen
    Ma, Quangui
    Yang, Xiaogang
    Cai, Yurong
    IONICS, 2024, 30 (07) : 4043 - 4053
  • [24] MICROHARDNESS ANISOTROPY ON THE (010) CLEAVAGE PLANE OF SINGLE-CRYSTALS OF BI2S3 AND SB2S3
    LI, H
    JENSEN, M
    BRADT, RC
    JOURNAL OF MATERIALS SCIENCE, 1992, 27 (05) : 1357 - 1360
  • [25] Electrochemical atomic layer deposition of Bi2S3/Sb2S3 quantum dots co-sensitized TiO2 nanorods solar cells
    Li, Weixin
    Yang, Junyou
    Jiang, Qinghui
    Luo, Yubo
    Hou, Yaru
    Zhou, Shuqin
    Xiao, Ye
    Fu, Liangwei
    Zhou, Zhiwei
    JOURNAL OF POWER SOURCES, 2016, 307 : 690 - 696
  • [26] Sb2S3 solar cells with TiO2 electron transporting layers synthesized by ALD and USP methods
    Dedova, T.
    Krautmann, R.
    Rusu, M.
    Katerski, A.
    Krunks, M.
    Unold, T.
    Spalatu, N.
    Mere, A.
    Sydorenko, J.
    Sibinski, M.
    Acik, I. Oja
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 280
  • [27] STRUCTURAL AND OPTICAL-PROPERTIES OF ELECTRODEPOSITED BI2S3, SB2S3 AND AS2S3 THIN-FILMS
    YESUGADE, NS
    LOKHANDE, CD
    BHOSALE, CH
    THIN SOLID FILMS, 1995, 263 (02) : 145 - 149
  • [28] Sb2Se3 versus Sb2S3 solar cell: A numerical simulation
    Mamta
    Maurya, K. K.
    Singh, V. N.
    SOLAR ENERGY, 2021, 228 : 540 - 549
  • [29] Effect of double blocking layers at TiO2/Sb2S3 and Sb2S3/spiro-MeOTAD interfaces on photovoltaic performance
    Kang, Hyun-Woo
    Lee, Jin-Wook
    Park, Nam-Gyu
    FARADAY DISCUSSIONS, 2014, 176 : 287 - 299
  • [30] Hole transfer dynamics of Sb2S3 solar cells
    Christians, Jeffrey A.
    Kamat, Prashant V.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246