Bilinear approach to soliton and periodic wave solutions of two nonlinear evolution equations of Mathematical Physics

被引:0
|
作者
Rui Cao
Qiulan Zhao
Lin Gao
机构
[1] Heze University,College of Mathematics and Statistics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
[3] Heze University,College Library
关键词
Potential Kadomtsev–Petviashvili equation; (3 + 1)-dimensional potential-YTSF equation; N-soliton solution; Periodic wave solution; Hirota method;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are investigated, which can be used to describe many mathematical and physical backgrounds, e.g., fluid dynamics and communications. Based on Hirota bilinear method, the bilinear equation for the (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation is obtained by applying an appropriate dependent variable transformation. Then N-soliton solutions of nonlinear evolution equation are derived by the perturbation technique, and the periodic wave solutions for potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are constructed by employing the Riemann theta function. Furthermore, the asymptotic properties of periodic wave solutions show that soliton solutions can be derived from periodic wave solutions.
引用
收藏
相关论文
共 50 条