Bilinear approach to soliton and periodic wave solutions of two nonlinear evolution equations of Mathematical Physics

被引:0
|
作者
Rui Cao
Qiulan Zhao
Lin Gao
机构
[1] Heze University,College of Mathematics and Statistics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
[3] Heze University,College Library
关键词
Potential Kadomtsev–Petviashvili equation; (3 + 1)-dimensional potential-YTSF equation; N-soliton solution; Periodic wave solution; Hirota method;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are investigated, which can be used to describe many mathematical and physical backgrounds, e.g., fluid dynamics and communications. Based on Hirota bilinear method, the bilinear equation for the (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation is obtained by applying an appropriate dependent variable transformation. Then N-soliton solutions of nonlinear evolution equation are derived by the perturbation technique, and the periodic wave solutions for potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are constructed by employing the Riemann theta function. Furthermore, the asymptotic properties of periodic wave solutions show that soliton solutions can be derived from periodic wave solutions.
引用
收藏
相关论文
共 50 条
  • [1] Bilinear approach to soliton and periodic wave solutions of two nonlinear evolution equations of Mathematical Physics
    Cao, Rui
    Zhao, Qiulan
    Gao, Lin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [2] Soliton solutions of nonlinear evolution equations in mathematical physics
    Arbabi, Somayeh
    Najafi, Mohammad
    [J]. OPTIK, 2016, 127 (10): : 4270 - 4274
  • [3] Dark soliton and periodic wave solutions of nonlinear evolution equations
    Guner, Ozkan
    Bekir, Ahmet
    Cevikel, Adem Cengiz
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [4] Dark soliton and periodic wave solutions of nonlinear evolution equations
    Özkan Güner
    Ahmet Bekir
    Adem Cengiz Cevikel
    [J]. Advances in Difference Equations, 2013
  • [5] Solitary wave solutions to nonlinear evolution equations in mathematical physics
    ANWAR JA’AFAR MOHAMAD JAWAD
    M MIRZAZADEH
    ANJAN BISWAS
    [J]. Pramana, 2014, 83 : 457 - 471
  • [6] Solitary wave solutions to nonlinear evolution equations in mathematical physics
    Jawad, Anwar Ja'afar Mohamad
    Mirzazadeh, M.
    Biswas, Anjan
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2014, 83 (04): : 457 - 471
  • [7] The periodic wave solutions for two nonlinear evolution equations
    Zhang, JL
    Wang, ML
    Cheng, DM
    Fang, ZD
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (02) : 129 - 132
  • [9] Direct Approach to Construct the Periodic Wave Solutions for Two Nonlinear Evolution Equations
    Cai Ke-Jie
    Tian Bo
    Zhang Huan
    Meng Xiang-Hua
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (03) : 473 - 478
  • [10] Searching for traveling wave solutions of nonlinear evolution equations in mathematical physics
    Huang, Bo
    Xie, Shaofen
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,