Cubic Graphs Admitting Vertex-Transitive Almost Simple Groups

被引:0
|
作者
Jia-Li Du
Fu-Gang Yin
Menglin Ding
机构
[1] Nanjing Normal University,School of Mathematical Science
[2] Central South University,School of Mathematics and Statistics
[3] Wucheng No. 2 Middle School,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Vertex-transitive graph; Cubic graph, almost simple group; 05C25; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma }$$\end{document} be a connected cubic graph admitting a vertex-transitive almost simple group G of automorphisms. In this paper, we study the normality of the socle T of G in the full automorphism group Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document} of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma } $$\end{document}. It is proved that if T is not normal in Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document}, then T=A47\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T= \text {A}_{47}$$\end{document}, A23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {A}_{23}$$\end{document}, A2f-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {A}_{2^f-1}$$\end{document} with f≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\ge 3$$\end{document}, or a simple group of Lie type of even characteristic with some exceptions. In particular, if Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma }$$\end{document} is arc-transitive and T is not normal in Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document}, then Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma } $$\end{document} is a Cayley graph on G, and (Aut(Γ),G)=(A48,A47)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\text {Aut}({\varGamma }),G)=(\text {A}_{48},\text {A}_{47})$$\end{document} or (S24,S23)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\text {S}_{24},\text {S}_{23})$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] CUBIC GRAPHS ADMITTING TRANSITIVE NON-ABELIAN CHARACTERISTICALLY SIMPLE GROUPS
    Hua, Xiao-Hui
    Feng, Yan-Quan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 113 - 123
  • [32] Limits of vertex-transitive graphs
    Giudici, Michael
    Li, Cai Heng
    Praeger, Cheryl E.
    Seress, Akos
    Trofimov, Vladimir
    ISCHIA GROUP THEORY 2004, PROCEEDINGS, 2006, 402 : 159 - +
  • [33] Vertex-transitive CIS graphs
    Dobson, Edward
    Hujdurovic, Ademir
    Milanic, Martin
    Verret, Gabriel
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 44 : 87 - 98
  • [34] A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS
    ALSPACH, B
    PARSONS, TD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02): : 307 - 318
  • [35] Presentations for vertex-transitive graphs
    Agelos Georgakopoulos
    Alex Wendland
    Journal of Algebraic Combinatorics, 2022, 55 : 795 - 826
  • [36] STRUCTURE OF VERTEX-TRANSITIVE GRAPHS
    GREEN, AC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (01) : 1 - 11
  • [37] On Isomorphisms of Vertex-transitive Graphs
    Chen, Jing
    Xia, Binzhou
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [38] Presentations for vertex-transitive graphs
    Georgakopoulos, Agelos
    Wendland, Alex
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 795 - 826
  • [39] Mobility of vertex-transitive graphs
    Potocnik, Primoz
    Sajna, Mateja
    Verret, Gabriel
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 579 - 591
  • [40] Quantum automorphism groups of vertex-transitive graphs of order ≤ 11
    Teodor Banica
    Julien Bichon
    Journal of Algebraic Combinatorics, 2007, 26