Cubic Graphs Admitting Vertex-Transitive Almost Simple Groups

被引:0
|
作者
Jia-Li Du
Fu-Gang Yin
Menglin Ding
机构
[1] Nanjing Normal University,School of Mathematical Science
[2] Central South University,School of Mathematics and Statistics
[3] Wucheng No. 2 Middle School,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Vertex-transitive graph; Cubic graph, almost simple group; 05C25; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma }$$\end{document} be a connected cubic graph admitting a vertex-transitive almost simple group G of automorphisms. In this paper, we study the normality of the socle T of G in the full automorphism group Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document} of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma } $$\end{document}. It is proved that if T is not normal in Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document}, then T=A47\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T= \text {A}_{47}$$\end{document}, A23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {A}_{23}$$\end{document}, A2f-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {A}_{2^f-1}$$\end{document} with f≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\ge 3$$\end{document}, or a simple group of Lie type of even characteristic with some exceptions. In particular, if Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma }$$\end{document} is arc-transitive and T is not normal in Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document}, then Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma } $$\end{document} is a Cayley graph on G, and (Aut(Γ),G)=(A48,A47)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\text {Aut}({\varGamma }),G)=(\text {A}_{48},\text {A}_{47})$$\end{document} or (S24,S23)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\text {S}_{24},\text {S}_{23})$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Cubic Graphs Admitting Vertex-Transitive Almost Simple Groups
    Du, Jia-Li
    Yin, Fu-Gang
    Ding, Menglin
    GRAPHS AND COMBINATORICS, 2023, 39 (06)
  • [2] Cubic Vertex-Transitive Graphs Admitting Automorphisms of Large Order
    Primož Potočnik
    Micael Toledo
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [3] Simple eigenvalues of cubic vertex-transitive graphs
    Guo, Krystal
    Mohar, Bojan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (05): : 1496 - 1519
  • [4] Cubic Vertex-Transitive Graphs Admitting Automorphisms of Large Order
    Potocnik, Primoz
    Toledo, Micael
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
  • [5] Pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups
    Du, Jia-Li
    Feng, Yan-Quan
    Zhou, Jin-Xin
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 63 : 134 - 145
  • [6] On 2-arc-transitive graphs admitting a vertex-transitive simple group
    Lu, Zai Ping
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (01) : 18 - 34
  • [7] ON ISOMORPHISMS OF VERTEX-TRANSITIVE CUBIC GRAPHS
    Fi, Jing Chen
    Li, Cai Heng
    Liu, Wei Jun
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (03) : 341 - 349
  • [8] VERTEX-TRANSITIVE GRAPHS AND VERTEX-TRANSITIVE MAPS
    BABAI, L
    JOURNAL OF GRAPH THEORY, 1991, 15 (06) : 587 - 627
  • [9] Edge-colourings of cubic graphs admitting a solvable vertex-transitive group of automorphisms
    Potocnik, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (02) : 289 - 300
  • [10] Efficient domination in cubic vertex-transitive graphs
    Knor, Martin
    Potocnik, Primoz
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (08) : 1755 - 1764