GSAASeqSP: A Toolset for Gene Set Association Analysis of RNA-Seq Data

被引:0
|
作者
Qing Xiong
Sayan Mukherjee
Terrence S. Furey
机构
[1] Southwest University,Department of Computer Science and Technology, Department of Statistics
[2] Duke University,Department of Statistical Science, Department of Computer Science and Department of Mathematics
[3] Lineberger Comprehensive Cancer Center and Carolina Center for Genomics and Society,Department of Genetics, Department of Biology
[4] The University of North Carolina at Chapel Hill,undefined
来源
Scientific Reports | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
RNA-Seq is quickly becoming the preferred method for comprehensively characterizing whole transcriptome activity and the analysis of count data from RNA-Seq requires new computational tools. We developed GSAASeqSP, a novel toolset for genome-wide gene set association analysis of sequence count data. This toolset offers a variety of statistical procedures via combinations of multiple gene-level and gene set-level statistics, each having their own strengths under different sample and experimental conditions. These methods can be employed independently, or results generated from multiple or all methods can be integrated to determine more robust profiles of significantly altered biological pathways. Using simulations, we demonstrate the ability of these methods to identify association signals and to measure the strength of the association. We show that GSAASeqSP analyses of RNA-Seq data from diverse tissue samples provide meaningful insights into the biological mechanisms that differentiate these samples. GSAASeqSP is a powerful platform for investigating molecular underpinnings of complex traits and diseases arising from differential activity within the biological pathways. GSAASeqSP is available at http://gsaa.unc.edu.
引用
收藏
相关论文
共 50 条
  • [41] Oqtans: a multifunctional workbench for RNA-seq data analysis
    Sreedharan, Vipin T.
    Schultheiss, Sebastian J.
    Jean, Geraldine
    Kahles, Andre
    Bohnert, Regina
    Drewe, Philipp
    Mudrakarta, Pramod
    Goernitz, Nico
    Zeller, Georg
    Raetsch, Gunnar
    BMC BIOINFORMATICS, 2014, 15
  • [42] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [43] Improving the Flexibility of RNA-Seq Data Analysis Pipelines
    Phan, John H.
    Wu, Po-Yen
    Wang, May D.
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 70 - 73
  • [44] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [45] PUseqClust: A Clustering Analysis Method for RNA-Seq Data
    Shi X.-F.
    Liu X.-J.
    Zhang L.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (09): : 2857 - 2868
  • [46] Multivariate approach to the analysis of correlated RNA-seq data
    Park, Hyunjin
    Lee, Seungyeoun
    Kim, Ye Jin
    Choi, Myung-Sook
    Park, Taesung
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1783 - 1786
  • [47] Intron Retention as a Mode for RNA-Seq Data Analysis
    Zheng, Jian-Tao
    Lin, Cui-Xiang
    Fang, Zhao-Yu
    Li, Hong-Dong
    FRONTIERS IN GENETICS, 2020, 11
  • [48] Getting the most out of RNA-seq data analysis
    Khang, Tsung Fei
    Lau, Ching Yee
    PEERJ, 2015, 3
  • [49] Impact of gene annotation choice on the quantification of RNA-seq data
    David Chisanga
    Yang Liao
    Wei Shi
    BMC Bioinformatics, 23
  • [50] De novo assembly and analysis of RNA-seq data
    Robertson, Gordon
    Schein, Jacqueline
    Chiu, Readman
    Corbett, Richard
    Field, Matthew
    Jackman, Shaun D.
    Mungall, Karen
    Lee, Sam
    Okada, Hisanaga Mark
    Qian, Jenny Q.
    Griffith, Malachi
    Raymond, Anthony
    Thiessen, Nina
    Cezard, Timothee
    Butterfield, Yaron S.
    Newsome, Richard
    Chan, Simon K.
    She, Rong
    Varhol, Richard
    Kamoh, Baljit
    Prabhu, Anna-Liisa
    Tam, Angela
    Zhao, YongJun
    Moore, Richard A.
    Hirst, Martin
    Marra, Marco A.
    Jones, Steven J. M.
    Hoodless, Pamela A.
    Birol, Inanc
    NATURE METHODS, 2010, 7 (11) : 909 - U62